Reaction Kinetics, Mechanisms and Catalysis

, Volume 115, Issue 1, pp 311–319 | Cite as

Kinetic study of the catalytic hydrogenation of the methylcyclopentadiene dimer over Pd/C catalyst

  • Miaoli Hao
  • Bolun Yang
  • Haiguo Wang
  • Yulei Guan
  • Suitao Qi
  • Jian Lv


The kinetics of the hydrogenation of the methylcyclopentadiene dimer (MCPD) to endo-tetrahydrodimethylcyclopentadiene over the Pd/C catalyst was investigated and the reactivity of the C=C bond in the MCPD molecule was analyzed by density function theory (DFT) calculation using Gaussian 03 series programs. The kinetic model was put forward based on the Langmuir–Hinshelwood mechanism with the consideration of the non-competitive adsorption between the organic species and atomic hydrogen. The model parameters were obtained by fitting experimental data at differential temperatures using the nonlinear least square and Runge–Kutta methods. The reaction activation energies for the two steps of hydrogenation were found to be 22.86 and 41.21 kJ mol−1. The good correlation between the kinetic model and the experimental data would contribute to better understanding of the consecutive hydrogenation mechanism of the high density polycyclic hydrocarbon tactical fuels derived from biomass.


Methylcyclopentadiene dimer Hydrogenation Pd/C Kinetics DFT 



Financial support for this work from the National Natural Science Foundation of China (21006076) and Specialized Research Fund for the Doctoral Program of Higher Education of China (20110201130002) are gratefully acknowledged.


  1. 1.
    Chung HS, Chen CSH, Kremer RA, Boulton JR (1999) Energy Fuels 13:641–649CrossRefGoogle Scholar
  2. 2.
    Zou JJ, Zhang XW, Kong J, Wang L (2008) Fuel 87:3655–3659CrossRefGoogle Scholar
  3. 3.
    Liu GZ, Mi ZT, Wang L, Zhang XW (2005) Ind Eng Chem Res 44:3846–3851CrossRefGoogle Scholar
  4. 4.
    Skala D, Hanika J (2003) Pet Coal 45:105–108Google Scholar
  5. 5.
    Hao ML, Yang BL, Wang HG, Liu G, Qi ST, Yang JM, Li CY, Lv J (2010) J Phys Chem A 114:3811–3817CrossRefGoogle Scholar
  6. 6.
    Farrar RB (1968) J Spacecraft Rockets 5:1364–1367CrossRefGoogle Scholar
  7. 7.
    Lawrence GC (1977) US Patent 4,059,644Google Scholar
  8. 8.
    Demande Fr (1979) FR Patent 2,402,700Google Scholar
  9. 9.
    Norton RV, Frank PJ, Fisher DH (1981) US Patent 4,277,636Google Scholar
  10. 10.
    Shibata Y, Yamanaka M (2013) J Org Chem 78:3731–3736CrossRefGoogle Scholar
  11. 11.
    Diudea MV, Nagy CL (2012) Diam Relat Mater 23:105–108CrossRefGoogle Scholar
  12. 12.
    Vaidya PD, Mahajani VV (2003) Ind Eng Chem Res 42:3881–3885CrossRefGoogle Scholar
  13. 13.
    Zhang XW, Xiong ZQ, Mi ZT (2006) J Chem Eng Chinese Univ 20:604–609CrossRefGoogle Scholar
  14. 14.
    Jiang C, Yin H, Chen Z (2004) Chinese J Chem Eng 12:652–657Google Scholar
  15. 15.
    Jere FT, Jackson JE, Miller DJ (2004) Ind Eng Chem Res 43:3297–3303CrossRefGoogle Scholar
  16. 16.
    Simakova IL, Solkina Y, Deliy I, Waerna J, Murzin DY (2009) Appl Catal A Gen 356:216–224CrossRefGoogle Scholar
  17. 17.
    Li M, Cui BJ, Xu XM (2005) Chem Adhes 27:90–95Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Miaoli Hao
    • 1
  • Bolun Yang
    • 1
  • Haiguo Wang
    • 2
  • Yulei Guan
    • 1
  • Suitao Qi
    • 1
  • Jian Lv
    • 3
  1. 1.Department of Chemical Engineering, School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.China Tianchen Engineering Corporation Co. LtdTianjinChina
  3. 3.Xi’an Modern Chemistry Research InstituteXi’anChina

Personalised recommendations