Reaction Kinetics, Mechanisms and Catalysis

, Volume 114, Issue 2, pp 697–710 | Cite as

Synthesis of SAPO-34 with the presence of additives and their catalytic performance in the transformation of chloromethane to olefins

  • Ling-tao Kong
  • Ben-xian Shen
  • Zhang Jiang
  • Ji-gang Zhao
  • Ji-chang Liu


SAPO-34 molecular sieves were synthesized in the presence of soluble starch, sodium dodecyl sulfate and cetyltrimethylammonium bromide as the additives under hydrothermal conditions, and the differences stemmed from the additives among all obtained SAPO-34 samples were characterized by XRD, SEM, BET, NH3-TPD and TG. Compared with the conventional SAPO-34 sample, the SAPO-34 samples modified by sodium dodecyl sulfate and cetyltrimethylammonium bromide showed less crystalline order, enlarged mesopore volume and external surface area and a reduction in total acidity amounts. Meanwhile, the SAPO-34 modified by soluble starch exhibited more total acidity amounts than the conventional SAPO-34 samples. The SAPO-34 samples modified by sodium dodecyl sulfate and cetyltrimethylammonium bromide showed better catalytic stability and less carbon deposition than the conventional SAPO-34 catalyst in the conversion of chloromethane to olefins due to the reduction in total acid sites and the increasing mesopore volume. The overall results of this study demonstrate that it is an effective way to modify the SAPO-34 molecular sieve with sodium dodecyl sulfate and cetyltrimethylammonium bromide as the additives for improving the SAPO-34 catalyst stability in the transformation of chloromethane to olefins.


SAPO-34 Soluble starch Sodium dodecyl sulfate Cetyltrimethylammonium bromide Chloromethane Light olefins 



We gratefully thank the analysis and test center of the State Key Laboratory of Chemical Engineering in East China University of Science and Technology.

Supplementary material

11144_2014_812_MOESM1_ESM.docx (745 kb)
Supplementary material 1 (DOC 745 kb)


  1. 1.
    Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614CrossRefGoogle Scholar
  2. 2.
    Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420CrossRefGoogle Scholar
  3. 3.
    Donk SV, Janssen AH, Bitter JH, Jong KPD (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45:297–319CrossRefGoogle Scholar
  4. 4.
    Yu J, Xu R (2010) Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials. Acc Chem Res 43:1195–1204CrossRefGoogle Scholar
  5. 5.
    Wang Z, Yu J, Xu R (2012) Needs and trends in rational synthesis of zeolitic materials. Chem Soc Rev 41:1729–1741CrossRefGoogle Scholar
  6. 6.
    Chen J, Li J, Wei Y, Yuan C, Li B, Xu S, Zhou Y, Wang J, Zhang M, Liu Z (2013) Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catal Commun 46:36–40CrossRefGoogle Scholar
  7. 7.
    Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Feng Y (2009) Effect of SAPO-34′s composition on its physico-chemical properties and deactivation in MTO process. Appl Catal A 364:48–56CrossRefGoogle Scholar
  8. 8.
    Nishiyama N, Kawaguchi M, Hirota Y, Vu DV, Egashira Y, Ueyama K (2009) Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl Catal A 362:193–199CrossRefGoogle Scholar
  9. 9.
    Venna SR, Carreon MA (2008) Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors. J Phys Chem Lett 112:16261–16265CrossRefGoogle Scholar
  10. 10.
    Carreon MA, Li S, Falconer JL, Noble RD (2008) Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J Am Chem Soc 130:5412–5413CrossRefGoogle Scholar
  11. 11.
    Wang D, Zhang L, Kamasamudram K, Epling WS (2013) In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34. ACS Catal 3:871–881CrossRefGoogle Scholar
  12. 12.
    Janchen J, Ackermann D, Weiler E, Stach H, Broesicke W (2005) Calorimetric investigation on zeolites, AlPO4′s and CaCl2 impregnated attapulgite for thermochemical storage of heat. Thermochim Acta 434:37–41CrossRefGoogle Scholar
  13. 13.
    Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J Am Chem Soc 106:6092–6093CrossRefGoogle Scholar
  14. 14.
    Prakash AM, Unnikrirhnan S (1994) Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. J Chem Soc Faraday Trans 90:2291–2296CrossRefGoogle Scholar
  15. 15.
    Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R (2002) Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater 53:97–108CrossRefGoogle Scholar
  16. 16.
    Liu G, Tian P, Liu Z (2012) Synthesis of SAPO-34 molecular sieves templated with diethylamine and their properties compared with other templates. Chin J Catal 33:174–182CrossRefGoogle Scholar
  17. 17.
    Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2014) Aluminium chloride: a new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process. Appl Catal A 472:72–79CrossRefGoogle Scholar
  18. 18.
    Liu G, Tian P, Li J, Zhang D, Zhou F, Liu Z (2008) Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Microporous Mesoporous Mater 111:143–149CrossRefGoogle Scholar
  19. 19.
    Haw JF, Song W, Marcus DM, Nicholas JB (2003) The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 36:317–326CrossRefGoogle Scholar
  20. 20.
    Kang M, Um MH, Park JY (1999) Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals I : effect of preparation factors on the gel formation. J Mol Catal A-Chem 150:195–203CrossRefGoogle Scholar
  21. 21.
    Kang M (1999) Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals II : catalytic performance under various reaction conditions. J Mol Catal A-Chem 150:205–212CrossRefGoogle Scholar
  22. 22.
    Kang M (2000) Methanol conversion on metal-incorporated SAPO-34 s MeAPSO-34s. J Mol Catal A-Chem 160:437–444CrossRefGoogle Scholar
  23. 23.
    Wei Y, He Y, Zhang D, Xu L, Meng S, Liu Z, Su BL (2005) Study of Mn incorporation into SAPO framework: synthesis, characterization and catalysis in chloromethane conversion to light olefins. Microporous Mesoporous Mater 90:188–197CrossRefGoogle Scholar
  24. 24.
    Wei Y, Zhang D, Xu L, Chang F, He Y, Meng S, Su BL, Liu Z (2008) Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catal Today 131:262–269CrossRefGoogle Scholar
  25. 25.
    Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su BL, Liu Z (2008) MgAPSO-34 molecular sieves with various Mg stoichiometries: synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Microporous Mesoporous Mater 116:684–692CrossRefGoogle Scholar
  26. 26.
    Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17:2494–2513CrossRefGoogle Scholar
  27. 27.
    Heyden HV, Mintova S, Bein T (2008) Nanosized SAPO-34 synthesized from colloidal solutions. Chem Mater 20:2956–2963CrossRefGoogle Scholar
  28. 28.
    Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 50:6502–6505CrossRefGoogle Scholar
  29. 29.
    Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J, Xu R (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C 117:8214–8222CrossRefGoogle Scholar
  30. 30.
    Schmidt F, Paasch S, Brunner E, Kaskel S (2014) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221CrossRefGoogle Scholar
  31. 31.
    Yang H, Liu Z, Gao H, Xie Z (2010) Synthesis and catalytic performances of hierarchical SAPO-34 monolith. J Mater Chem 20:3227–3231CrossRefGoogle Scholar
  32. 32.
    Yang ST, Kim JY, Chae HJ, Kim M, Jeong SY, Ahn WS (2012) Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure. Mater Res Bull 47:3888–3892CrossRefGoogle Scholar
  33. 33.
    Singh AK, Yadav R, Sakthivel A (2014) Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves. Microporous Mesoporous Mater 181:166–174CrossRefGoogle Scholar
  34. 34.
    Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J Catal 258:243–249CrossRefGoogle Scholar
  35. 35.
    Gu F, Wei F, Yang J, Lin N, Lin W, Wang Y, Zhu J (2006) New strategy to synthesis of hierarchical mesoporous zeolites. Chem Mater 22:2442–2450CrossRefGoogle Scholar
  36. 36.
    Zhang D, Wei Y, Xu L, Du A, Chang F, Su BL, Liu Z (2006) Chloromethane conversion to higher hydrocarbons over zeolites and SAPOs. Catal Lett 109:97–101CrossRefGoogle Scholar
  37. 37.
    Olah GA, Gupta B, Farina M, Felberg JD, Wai MP, Husain A, Karpeles R, Lammertsma K, Melhotra AK, Trivedi NJ (1985) Selective monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over y-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. J Am Chem Soc 107:7097CrossRefGoogle Scholar
  38. 38.
    Taylor CE, Noceti RP (1988) Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Stud Surf Sci Catal 36:483–489CrossRefGoogle Scholar
  39. 39.
    Wei Y, Zhang D, Liu Z, Su BL (2006) Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. J Catal 238:46–57CrossRefGoogle Scholar
  40. 40.
    Wei Y, Zhang D, Chang F, Xia Q, Su BL, Liu Z (2009) Ultra-short contact time conversion of chloromethane to olefins over pre-coked SAPO-34: direct insight into the primary conversion with coke deposition. Chem Commun 40:5999–6001CrossRefGoogle Scholar
  41. 41.
    Svelle S, Aravinthan S, Bjørgen M, Lillerud KP, Kolboe S, Dahl IM, Olsbye U (2006) The methyl halide to hydrocarbon reaction over H-SAPO-34. J Catal 241:243–254CrossRefGoogle Scholar
  42. 42.
    Olsbye U, Saure OV, Muddada NB, Bordiga S, Lamberti C, Nilsen MH, Lillerud KP, Svelle S (2011) Methane conversion to light olefins-how does the methyl halide route differ from the methanol to olefins (MTO) route? Catal Today 171:211–220CrossRefGoogle Scholar
  43. 43.
    Zhang A, Sun S, Komon ZJA, Osterwalder N, Gadewar S, Stoimenov P, Auerbach DJ, Stucky GD, McFarland EW (2011) Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves. Phys Chem Chem Phys 13:2550–2555CrossRefGoogle Scholar
  44. 44.
    Wang P, Lv A, Hu J, Xu J, Lu G (2008) The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Microporous Mesoporous Mater 152:178–184CrossRefGoogle Scholar
  45. 45.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  46. 46.
    Dahl IM, Kolboe S (1993) On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett 20:329–336CrossRefGoogle Scholar
  47. 47.
    Dahl IM, Kolboe S (1994) On the reaction mechanism for hydrocarbon formation from Methanol over SAPO-34: I. isotopic labeling studies of the co-reaction of ethene and methanol. J Catal 149:458–464CrossRefGoogle Scholar
  48. 48.
    Ilias S, Bhan A (2013) Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 3:18–31CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Ling-tao Kong
    • 1
  • Ben-xian Shen
    • 1
  • Zhang Jiang
    • 1
  • Ji-gang Zhao
    • 1
  • Ji-chang Liu
    • 1
  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science & TechnologyShanghaiPeople’s Republic of China

Personalised recommendations