Reaction Kinetics, Mechanisms and Catalysis

, Volume 114, Issue 2, pp 795–815 | Cite as

A kinetic comparative study of azo dye decolorization by catalytic wet peroxide oxidation using Fe–Y zeolite/H2O2 and photooxidation using UV/H2O2

  • Shaker Haji
  • M. Khalaf
  • Mohammed Shukrallah
  • Jaffar Abdullah
  • Shakeel Ahmed


A comparative study between the catalytic wet peroxide oxidation (CWPO: Fe(III)–Y zeolite/H2O2) and photooxidation (PO: UV/H2O2) of three different azo dyes—namely, reactive yellow, reactive red, and methyl orange—was conducted. Compared to CWPO, PO demonstrated higher initial reaction rates and final conversions. The contributions of H2O2, UV, UV/H2O2, Fe–Y zeolite, and Fe–Y zeolite/H2O2 to the decolorization of reactive yellow were investigated and the results showed that treatment with UV/H2O2 was the most effective process for the color removal. The effect of [H2O2]0, UV irradiation power, [Fe–Y zeolite], and the reusability of the catalyst were also studied. The catalyst was found to be reusable, but with loss in its catalytic activity. An optimum [H2O2]0 existed in both the PO and CWPO processes. However, this was higher in the latter process. The extent of decolorization increased as the UV irradiation power and [Fe–Y zeolite] increased, but there was a limit in the second case. In addition, the decolorization kinetics of the reactive yellow in both processes were investigated. It was concluded that PO followed an apparent first order kinetic model while CWPO followed the Chu kinetic model. Furthermore, a pseudo-second order rate law, which could be used in continuous flow reactor design equations, was proposed and verified to describe the CWPO rate of reaction.


Azo dyes Decolorization Photo oxidation UV/H2O2 Catalytic wet peroxide oxidation Heterogeneous Fenton-like reaction 

Supplementary material

11144_2014_810_MOESM1_ESM.docx (87 kb)
Supplementary material 1 (DOC 87 kb)


  1. 1.
    Arun Kumar K, Pradeep K, Shri C (2009) Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. J Hazard Mater 166:342–347. doi: 10.1016/j.jhazmat.2008.11.042 CrossRefGoogle Scholar
  2. 2.
    Hua L, Ma H, Zhang L (2013) Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere 90(2):143–149. doi: 10.1016/j.chemosphere.2012.06.018 CrossRefGoogle Scholar
  3. 3.
    Sanja P, Dinko V, Natalija K, Danijel Š (2009) Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. J Hazard Mater 164:1137–1145. doi: 10.1016/j.jhazmat.2008.09.008 CrossRefGoogle Scholar
  4. 4.
    Tekbaş M, Yatmaz HC, Bektaş N (2008) Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst. Microporous Mesoporous Mater 115(3):594–602. doi: 10.1016/j.micromeso.2008.03.001 CrossRefGoogle Scholar
  5. 5.
    Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53(1):51–59. doi: 10.1016/S0920-5861(99)00102-9 CrossRefGoogle Scholar
  6. 6.
    Gil A, Korili SA, Trujillano R, Vicente MA (2010) Pillared clays and related catalysts. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Ramirez JH, Costa CA, Madeira LM, Mata G, Vicente MA, Rojas-Cervantes ML, López-Peinado AJ, Martín-Aranda RM (2007) Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl Catal B 71(1–2):44–56CrossRefGoogle Scholar
  8. 8.
    de Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33(16):2726–2732CrossRefGoogle Scholar
  9. 9.
    Jiang C, Gao Z, Qu H, Li J, Wang X, Li P, Liu H (2013) A new insight into Fenton and Fenton-like processes for water treatment: part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions. J Hazard Mater 250–251:76–81. doi: 10.1016/j.jhazmat.2013.01.055 CrossRefGoogle Scholar
  10. 10.
    Rache ML, García AR, Zea HR, Silva AMT, Madeira LM, Ramírez JH (2014) Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y–Fe catalyst—Kinetics with a model based on the Fermi’s equation. Appl Catal B 146:192–200. doi: 10.1016/j.apcatb.2013.04.028 CrossRefGoogle Scholar
  11. 11.
    Yuzhong Z, Hailong L, Yiliang C (2010) Copper hydroxyphosphate as catalyst for the wet hydrogen peroxide oxidation of azo dyes. J Hazard Mater 180:481–485. doi: 10.1016/j.jhazmat.2010.04.055 CrossRefGoogle Scholar
  12. 12.
    Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50. doi: 10.1016/S0304-3894(02)00282-0 CrossRefGoogle Scholar
  13. 13.
    Perathoner S, Centi G (2005) Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Top Catal 33(1–4):207–224. doi: 10.1007/s11244-005-2529-x CrossRefGoogle Scholar
  14. 14.
    Aleksić M, Kušić H, Koprivanac N, Leszczynska D, Božić AL (2010) Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water—the application of zeolite assisted AOPs. Desalination 257(1–3):22–29. doi: 10.1016/j.desal.2010.03.016 CrossRefGoogle Scholar
  15. 15.
    Liu Y, Sun D (2007) Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. J Hazard Mater 143(1–2):448–454. doi: 10.1016/j.jhazmat.2006.09.043 CrossRefGoogle Scholar
  16. 16.
    Hassan H, Hameed BH (2011) Oxidative decolorization of acid red 1 solutions by Fe–zeolite Y type catalyst. Desalination 276:45–52. doi: 10.1016/j.desal.2011.03.018 CrossRefGoogle Scholar
  17. 17.
    Haji S, Benstaali B, Al-Bastaki N (2011) Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chem Eng J 168:134–139. doi: 10.1016/j.cej.2010.12.050 CrossRefGoogle Scholar
  18. 18.
    Riga A, Soutsas K, Ntampegliotis K, Karayannis V, Papapolymerou G (2007) Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 211(1–3):72–86. doi: 10.1016/j.desal.2006.04.082 CrossRefGoogle Scholar
  19. 19.
    Aleboyeh A, Aleboyeh H, Moussa Y (2003) “Critical” effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: Acid Orange 8, Acid Blue 74 and Methyl Orange. Dyes and Pigm 57(1):67–75. doi: 10.1016/S0143-7208(03)00010-X CrossRefGoogle Scholar
  20. 20.
    Baldrian P, Merhautová V, Gabriel J, Nerud F, Stopka P, Hrubý M, Beneš MJ (2006) Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Appl Catal B 66(3–4):258–264. doi: 10.1016/j.apcatb.2006.04.001 CrossRefGoogle Scholar
  21. 21.
    Fatma T (2012) Adsorption and catalytic properties of Fe/Cr-pillared bentonites. Chem Eng J 185–186:380–390. doi: 10.1016/j.cej.2012.01.094 Google Scholar
  22. 22.
    Shukla P, Wang S, Sun H, Ang HM, Tadé M (2010) Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chem Eng J 164(1):255–260CrossRefGoogle Scholar
  23. 23.
    Fathima NN, Aravindhan R, Rao JR, Nair BU (2008) Dye house wastewater treatment through advanced oxidation process using Cu-exchanged Y zeolite: a heterogeneous catalytic approach. Chemosphere 70(6):1146–1151CrossRefGoogle Scholar
  24. 24.
    Soon AN, Hameed BH (2013) Degradation of Acid Blue 29 in visible light radiation using iron modified mesoporous silica as heterogeneous Photo-Fenton catalyst. Appl Catal A 450:96–105CrossRefGoogle Scholar
  25. 25.
    Nezamzadeh-Ejhieh A, Amiri M (2013) CuO supported Clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol 235:279–288. doi: 10.1016/j.powtec.2012.10.017 CrossRefGoogle Scholar
  26. 26.
    Guo J, Al-Dahhan M (2006) Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol. Appl Catal A 299:175–184. doi: 10.1016/j.apcata.2005.10.039 CrossRefGoogle Scholar
  27. 27.
    Alaton IA, Balcioglu IA (2001) Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: a case study with hydrolyzed Reactive Black 5. J Photochem Photobiol, A 141(2–3):247–254. doi: 10.1016/S1010-6030(01)00440-3 CrossRefGoogle Scholar
  28. 28.
    Yang Z, Yi Z, Jiang X, Jiang W, Lim TM (2013) Comparison of the degradation of azo dye AR88 by several oxidation processes. Fresenius Environ Bull 22(1A):236–241Google Scholar
  29. 29.
    László Z, Dombi A (2002) Oxidation of [Fe(CN)6]4− and reduction of [Fe(CN)6]3− in VUV-irradiated aqueous solutions. Chemosphere 46(4):491–494. doi: 10.1016/S0045-6535(01)00184-9 CrossRefGoogle Scholar
  30. 30.
    Tasaki T, Wada T, Fujimoto K, Kai S, Ohe K, Oshima T, Baba Y, Kukizaki M (2009) Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles. J Hazard Mater 162(2–3):1103–1110. doi: 10.1016/j.jhazmat.2008.05.162 CrossRefGoogle Scholar
  31. 31.
    Guimarães JR, Guedes Maniero M, Nogueira de Araújo R (2012) A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. J Environ Manage 110:33–39. doi: 10.1016/j.jenvman.2012.05.020 CrossRefGoogle Scholar
  32. 32.
    Lizama C, Freer J, Baeza J, Mansilla HD (2002) Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catal Today 76(2–4):235–246CrossRefGoogle Scholar
  33. 33.
    Elmorsi TM, Riyad YM, Mohamed ZH, Abd El Bary HMH (2010) Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J Hazard Mater 174(1–3):352–358CrossRefGoogle Scholar
  34. 34.
    Bali U, Çatalkaya E, Şengül F (2004) Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: a comparative study. J Hazard Mater 114(1–3):159–166. doi: 10.1016/j.jhazmat.2004.08.013 CrossRefGoogle Scholar
  35. 35.
    Zuorro A, Lavecchia R (2014) Evaluation of UV/H2O2 advanced oxidation process (AOP) for the degradation of diazo dye reactive green 19 in aqueous solution. Desalination and water treatment 52(7–9):1571–1577CrossRefGoogle Scholar
  36. 36.
    Rache ML, García AR, Zea HR, Silva AMT, Madeira LM, Ramírez JH (2014) Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y–Fe catalyst—Kinetics with a model based on the Fermi’s equation. Appl Catal B 146:192–200. doi: 10.1016/j.apcatb.2013.04.028 CrossRefGoogle Scholar
  37. 37.
    Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3–4):501–551. doi: 10.1016/S1093-0191(03)00032-7 CrossRefGoogle Scholar
  38. 38.
    Jiang C, Pang S, Ouyang F, Ma J, Jiang J (2010) A new insight into Fenton and Fenton-like processes for water treatment. J Hazard Mater 174(1–3):813–817. doi: 10.1016/j.jhazmat.2009.09.125 CrossRefGoogle Scholar
  39. 39.
    Mariana N, Ayfer Y, Ilie S, Antonius K (2003) Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J Photochem Photobiol A 161:87–93. doi: 10.1016/S1010-6030(03)00270-3 CrossRefGoogle Scholar
  40. 40.
    Barbusinski K (2009) Fenton reaction—controversy concerning the chemistry. Ecol Chem Eng 16(3):347–358Google Scholar
  41. 41.
    Zhao H, Xu S, Zhong J, Bao X (2004) Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems. Catal Today 93–95:857–861. doi: 10.1016/j.cattod.2004.06.086 CrossRefGoogle Scholar
  42. 42.
    Kumar D, Ameta R (2013) Use of photo-Fenton reagent for the degradation of basic orange 2 in aqueous medium. J Chem Pharm Res 5(1):68–74Google Scholar
  43. 43.
    Zhan Y, Zhou X, Fu B, Chen Y (2011) Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst. J Hazard Mater 187(1–3):348–354. doi: 10.1016/j.jhazmat.2011.01.027 CrossRefGoogle Scholar
  44. 44.
    Shu H-Y, Chang M-C, Fan H-J (2004) Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters. J Hazard Mater 113(1–3):201–208. doi: 10.1016/j.jhazmat.2004.06.007 CrossRefGoogle Scholar
  45. 45.
    Shu H-Y, Chang M-C (2005) Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process. J Hazard Mater 125(1–3):96–101. doi: 10.1016/j.jhazmat.2005.05.016 CrossRefGoogle Scholar
  46. 46.
    Tan C, Gao N, Deng Y, Zhang Y, Sui M, Deng J, Zhou S Degradation of antipyrine by UV, UV/H2O2 and UV/PS. J Hazard Mater (0). doi:  10.1016/j.jhazmat.2013.06.060
  47. 47.
    Modirshahla N, Behnajady MA (2006) Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling. Dyes Pigments 70(1):54–59. doi: 10.1016/j.dyepig.2005.04.012 CrossRefGoogle Scholar
  48. 48.
    Neamtu M, Siminiceanu I, Yediler A, Kettrup A (2002) Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation. Dyes Pigments 53(2):93–99. doi: 10.1016/S0143-7208(02)00012-8 CrossRefGoogle Scholar
  49. 49.
    Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA (2004) Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27). Chemosphere 56(10):895–900. doi: 10.1016/j.chemosphere.2004.06.001 CrossRefGoogle Scholar
  50. 50.
    Behnajady MA, Modirshahla N, Shokri M, Vahid B (2009) Design equation with mathematical kinetic modeling for photooxidative degradation of C.I. Acid Orange 7 in an annular continuous-flow photoreactor. J Hazard Mater 165(1–3):168–173. doi: 10.1016/j.jhazmat.2008.09.095 CrossRefGoogle Scholar
  51. 51.
    Behnajady MA, Modirshahla N, Shokri M (2004) Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere 55(1):129–134. doi: 10.1016/j.chemosphere.2003.10.054 CrossRefGoogle Scholar
  52. 52.
    Fogler HS (2006) Elements of chemical reaction engineering. Pearson Education Internat, New JerseyGoogle Scholar
  53. 53.
    Yoo ES (2002) Kinetics of chemical decolorization of the azo dye C.I. Reactive Orange 96 by sulfide. Chemosphere 47(9):925–931. doi: 10.1016/S0045-6535(02)00068-1 CrossRefGoogle Scholar
  54. 54.
    Al Momani F, Sans C, Esplugas S (2004) A comparative study of the advanced oxidation of 2,4-dichlorophenol. J Hazard Mater 107(3):123–129. doi: 10.1016/j.jhazmat.2003.11.015 CrossRefGoogle Scholar
  55. 55.
    Núñez L, García-Hortal JA, Torrades F (2007) Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes. Dyes Pigments 75(3):647–652. doi: 10.1016/j.dyepig.2006.07.014 CrossRefGoogle Scholar
  56. 56.
    Galindo C, Jacques P, Kalt A (2001) Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74). J Photochem Photobiol A 141(1):47–56CrossRefGoogle Scholar
  57. 57.
    Sun SP, Li CJ, Sun JH, Shi SH, Fan MH, Zhou Q (2009) Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. J Hazard Mater 161(2–3):1052–1057CrossRefGoogle Scholar
  58. 58.
    Zhang G, Wang S, Zhao S, Fu L, Chen G, Yang F (2011) Oxidative degradation of azo dye by hydrogen peroxide electrogenerated in situ on anthraquinonemonosulphonate/polypyrrole composite cathode with heterogeneous CuO/γ-Al2O3 catalyst. Appl Catal B 106(3–4):370–378CrossRefGoogle Scholar
  59. 59.
    Chu W, Kwan CY, Chan KH, Chong C (2004) An unconventional approach to studying the reaction kinetics of the Fenton’s oxidation of 2,4-dichlorophenoxyacetic acid. Chemosphere 57(9):1165–1171. doi: 10.1016/j.chemosphere.2004.07.047 CrossRefGoogle Scholar
  60. 60.
    Behnajady MA, Modirshahla N, Ghanbary F (2007) A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. J Hazard Mater 148(1–2):98–102. doi: 10.1016/j.jhazmat.2007.02.003 CrossRefGoogle Scholar
  61. 61.
    Tunç S, Gürkan T, Duman O (2012) On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chem Eng J 181–182:431–442. doi: 10.1016/j.cej.2011.11.109 CrossRefGoogle Scholar
  62. 62.
    Ertugay N, Acar FN (2013) Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian J Chem. doi: 10.1016/j.arabjc.2013.1002.1009 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Shaker Haji
    • 1
  • M. Khalaf
    • 1
  • Mohammed Shukrallah
    • 1
  • Jaffar Abdullah
    • 1
  • Shakeel Ahmed
    • 2
  1. 1.Department of Chemical Engineering, College of EngineeringUniversity of BahrainIsa TownBahrain
  2. 2.Center for Refining & Petrochemicals, Research InstituteKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations