Reaction Kinetics, Mechanisms and Catalysis

, Volume 114, Issue 2, pp 561–570 | Cite as

Superior thermal stability and oxygen storage capacity of ceria nanoparticles dispersed on alumina cryogel

  • Toshihiko Osaki
  • Kiho Yamada
  • Koji Watari
  • Koji Tajiri


Cerium-dispersed alumina cryogel was prepared from cerium nitrate and aluminum sec-butoxide by a combination of one-pot sol–gel with freeze drying. The cryogel catalyst exhibited higher thermal stability of ceria and larger oxygen storage capacity than the corresponding xerogel and impregnation catalysts. The better stability and capacity were owing to the homogeneous distribution of cerium in boehmite gel by the one-pot synthesis of cerium-boehmite gel, and also to the suppression of aggregation of the cerium during the subsequent elimination of water from frozen gel by sublimation. As a result, cerium was finely dispersed and stabilized throughout the alumina cryogel, retarding the sintering of ceria at high temperatures. The destruction of fine structures of the catalyst at high temperatures was less pronounced on the cryogel, which also contributed to the stability of ceria.


Cryogel Sol–gel Freeze drying CeO2 Al2O3 Thermal stability Oxygen storage capacity 


  1. 1.
    Yao HC, Yao YFY (1984) J Catal 86:254CrossRefGoogle Scholar
  2. 2.
    Ozawa M, Kimura M, Isogai A (1993) J Alloy Compd 193:73CrossRefGoogle Scholar
  3. 3.
    Sugiura M, Ozawa M, Suda A, Suzuki T, Kanazawa T (2005) Bull Chem Soc Jpn 78:752CrossRefGoogle Scholar
  4. 4.
    Monte RD, Kaspar J (2005) J Mater Chem 15:633CrossRefGoogle Scholar
  5. 5.
    Haneda M, Mizushima T, Kakuta N, Ueno A, Sato Y, Matsuura S, Kasahara K, Sato M (1993) Bull Chem Soc Jpn 66:1279CrossRefGoogle Scholar
  6. 6.
    Haneda M, Mizushima T, Kakuta N, Ueno A (1997) Nippon Kagaku Kaishi 169–179Google Scholar
  7. 7.
    Vazquez A, Lopez T, Gomez R, Bokhimi X (2001) J Mol Catal A-Chem 167:91CrossRefGoogle Scholar
  8. 8.
    Wey MY, Tseng HH, Liang YS, Chang YC, Lu CY (2006) J Non-Cryst Solids 352:2166CrossRefGoogle Scholar
  9. 9.
    Pecchi G, Reyes P, Lopez T, Gomez R (2004) J Non-Cryst Solids 345:624CrossRefGoogle Scholar
  10. 10.
    Watanabe M, Miyazaki M, Masuda K, Kachi N, Okada A, Maeda K, Sano T, Mizukami F (2001) Catal Catal (Shokubai) 34:144Google Scholar
  11. 11.
    Chen JC, Wey MY, Yeh CL, Liang YS (2004) Appl Catal B: Env 48:25CrossRefGoogle Scholar
  12. 12.
    Hoang-Van C, Pommier B, Harivololona R, Pichat P (1992) J Non-Cryst Solids 145:250CrossRefGoogle Scholar
  13. 13.
    Hoang-Van C, Harivololona R, Pommier B (1995) Stud Surf Sci Catal 91:435CrossRefGoogle Scholar
  14. 14.
    Pajonk GM (1991) Appl Catal 72:217CrossRefGoogle Scholar
  15. 15.
    Pajonk GM (1997) Catal Today 35:319CrossRefGoogle Scholar
  16. 16.
    Kirchnerova J, Klvana D, Chaouki J (2000) Appl Catal A-Gen 196:191CrossRefGoogle Scholar
  17. 17.
    Klvana D, Chaouki J, Repellin-Lacroix M, Pajonk GM (1989) J Phys 50:C429Google Scholar
  18. 18.
    Pajonk GM (1989) J Phys 50:C413Google Scholar
  19. 19.
    Pajonk GM, Repellin-Lacroix M, Abouarnadasse S, Chaouki J, Klvana D (1990) J Non-Cryst Solids 121:66CrossRefGoogle Scholar
  20. 20.
    Miki T, Ogawa T, Ueno A, Matsuura S, Sato M (1988) Chem Lett 565–568Google Scholar
  21. 21.
    Osaki T, Yamada K, Watari K, Tajiri K, Shima S, Miki T, Tai Y (2012) J Sol-Gel Sci Technol 61:268CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Toshihiko Osaki
    • 1
  • Kiho Yamada
    • 1
  • Koji Watari
    • 1
  • Koji Tajiri
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations