Reaction Kinetics, Mechanisms and Catalysis

, Volume 112, Issue 2, pp 347–360 | Cite as

Catalytic wet air oxidation of oilfield produced wastewater containing refractory organic pollutants over copper/cerium–manganese oxide

  • Diana Posada
  • Paulino Betancourt
  • Keyla Fuentes
  • Santiago Marrero
  • Fernando Liendo
  • Joaquín L. Brito


The feasibility of the application of the catalytic wet air oxidation (CWAO) in two produced water containing refractory organic pollutants [total organic carbon (TOC) content 1,249 and 1,442 mg L−1] were studied. The produced waters were oxidized in a batch reactor using a (4 wt%) Cu/Mn–Ce–O catalyst, prepared by the co-precipitation of manganese and ceria nitrates, followed by wet impregnation of copper acetate. The efficiency of the CWAO of oilfield produced water was determined by TOC removal of the tested wastewater, the Pseudomonas putida growth inhibition test was also accomplished. Approximately 80 % in TOC reduction was achieved during wet oxidation over the catalyst at 433 K and an oxygen partial pressure of 1.0 MPa. No leaching of Cu or Mn was detected.


Catalytic wet air oxidation Oilfield produced water Cu/Mn–Ce–O catalyst TOC Pseudomonas putida growth inhibition test 



Thanks are given to the FONACIT (Project No. QF-10) and to PDVSA-INTEVEP (Project No. 2001-00139/2003-056) for financial help, which allowed us to carry out the research reported here.


  1. 1.
    Dune K, Ezeilo F (2012) Petrol Technol Dev J 1:1–6Google Scholar
  2. 2.
    Environmental Protection Agency, EPA (1979) Oil and Gas extraction (O&G) effluent guidelines and standards. 40CFR Part 435.11 (bb)Google Scholar
  3. 3.
    Stephenson M (1992) J Petrol Technol 44:548–550CrossRefGoogle Scholar
  4. 4.
    Yang Y, Zhang X, Wang Z (2002) Water Sci Technol 46:165–170Google Scholar
  5. 5.
    Dalmacija B, Tamas Z, Karlovic E, Miskovic D (1996) Water Res 30:1065–1068CrossRefGoogle Scholar
  6. 6.
    Campos J, Borges R, Filho A, Nobrega R, Sant’Anna G Jr (2002) Water Res 36:95–104CrossRefGoogle Scholar
  7. 7.
    Imamura S (1999) Ind Eng Chem Res 38:1743–1753CrossRefGoogle Scholar
  8. 8.
    Levec J, Pintar A (2007) Catal Today 124:172–184CrossRefGoogle Scholar
  9. 9.
    Ding Z, Wade L, Gloyna E (1998) Ind Eng Chem Res 37:1707–1716CrossRefGoogle Scholar
  10. 10.
    Aki S, Abraham M (1999) Ind Eng Chem Res 38:358–367CrossRefGoogle Scholar
  11. 11.
    Chen H, Sayari A, Adnot A, Larachi F (2001) Appl Catal B 32:195–204CrossRefGoogle Scholar
  12. 12.
    Arena F, Italiano C, Spadaro L (2012) Appl Catal B 115–116:34–336Google Scholar
  13. 13.
    Arena F, Italiano C, Drago G, Triunfo G, Spadaro L (2014) Appl Catal B 144:292–299CrossRefGoogle Scholar
  14. 14.
    Silva A, Marques R, Quinta-Ferreira R (2004) Appl Catal B 47:269–279CrossRefGoogle Scholar
  15. 15.
    Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62:265–273CrossRefGoogle Scholar
  16. 16.
    Chen H, Sayari A, Adnot A, Larachi F (2006) Appl Catal B 32:195–204CrossRefGoogle Scholar
  17. 17.
    Arena F, Trunfio G, Negro J, Spadaro L (2008) Appl Catal B 85:40–47CrossRefGoogle Scholar
  18. 18.
    Posada D, Betancourt P, Liendo F, Brito J (2006) Catal Lett 106:81–88CrossRefGoogle Scholar
  19. 19.
    Machida M, Kurogi D, Kijima T (2003) J Phys Chem 107:196–202CrossRefGoogle Scholar
  20. 20.
    Qi G, Yang R, Chang R (2004) Appl Catal B 51:93–106CrossRefGoogle Scholar
  21. 21.
    Barrett E, Joyner L, Halenda P (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  22. 22.
    ISO 10712-1995-12-15 (1995) Water Quality–Pseudomonas putida Growth Inhibition Test (Pseudomonas Cell Multiplication Inhibition Test), 1st Ed., ISO, Geneve, SwitzerlandGoogle Scholar
  23. 23.
    Chapelle F (1993) Ground-water microbiology and geochemistry. Wiley, New Jersey, pp 349–352Google Scholar
  24. 24.
    Neff J, Sour T, Maciolek N (1992) Produced water 2: environmental issues and mitigation technologies. Plenum Press, New York, pp 502–503Google Scholar
  25. 25.
    Arena F, Giovenco R, Torre T, Venuto A, Parmaliana A (2003) Appl Catal B 45:51–62CrossRefGoogle Scholar
  26. 26.
    Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158–3164CrossRefGoogle Scholar
  27. 27.
    Zhou G, Shah P, Gorte R (2008) Catal Lett 120:191–197CrossRefGoogle Scholar
  28. 28.
    Chen H, Sayari A, Adnot A, Larachi F (2001) Appl Catal B 32:195–204CrossRefGoogle Scholar
  29. 29.
    Wagner C, Riggs W, Davis L, Moulder J, Muilenberg G (1979) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp, USAGoogle Scholar
  30. 30.
    Qi G, Yang R (2004) J Phys Chem B 108:15738–15747CrossRefGoogle Scholar
  31. 31.
    Liang Q, Wu X, Weng D, Xu H (2008) Catal Today 139:113–118CrossRefGoogle Scholar
  32. 32.
    Hamoudi S, Larachi F, Adnot A, Sayari A (1999) J Catal 185:333–344CrossRefGoogle Scholar
  33. 33.
    Qi G, Yang R (2003) Chem Commun 7:848–849Google Scholar
  34. 34.
    Urban M, Nakamoto K, Basolo F (1982) Inorg Chem 21:3406–3408CrossRefGoogle Scholar
  35. 35.
    Meng X, Lin K, Yang X, Sun Z, Jiang D, Xiao F (2003) J Catal 218:460–464CrossRefGoogle Scholar
  36. 36.
    Li C, Domen K, Mayura K, Onishi T (1989) J Am Chem Soc 111:7683–7687CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Diana Posada
    • 1
  • Paulino Betancourt
    • 1
  • Keyla Fuentes
    • 2
  • Santiago Marrero
    • 1
  • Fernando Liendo
    • 3
  • Joaquín L. Brito
    • 4
  1. 1.Centro de Catálisis, Petróleo y Petroquímica, Escuela de Química, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Departamento de Química Aplicada, Facultad de IngenieríaUniversidad Central de VenezuelaCaracasVenezuela
  3. 3.Gerencia de Ecología y AmbientePDVSA-IntevepSector El TamborVenezuela
  4. 4.Centro de QuímicaInstituto Venezolano de Investigaciones Científicas, IVICAltos de PipeVenezuela

Personalised recommendations