Reaction Kinetics, Mechanisms and Catalysis

, Volume 112, Issue 1, pp 199–208 | Cite as

Preparation, characterization and use of K2O, Al2O3 and SiO2 modified iron oxide as catalyst for the vapor phase synthesis of 2,3,6-trimethylphenol from m-cresol and methanol

  • Lei Niu
  • Zunshan Li
  • Feng Jiang
  • Minghao Zhou
  • Zhonghao Wang
  • Guomin Xiao


Vapor phase ortho-selective methylation of m-cresol with methanol has been carried out over the catalyst of Fe, Si, Al and K oxides in a fixed-bed, down-flow reactor at 573–673 K. Catalyst characterization has been carried out by XRD, BET and SEM. 2,3,6-Trimethylphenol was found to be the major product derived with very little 2,3-xylenol and 2,5-xylenol. The effect of the K2O content of the catalyst, reaction temperature, reactant molar ratio and LHSV on the methylation of m-cresol with methanol was investigated. When the formation of the catalyst was fixed at Fe2O3:SiO2:Al2O3:K2O = 100:5:2:0.9, under a reaction condition of 653 K reaction temperature, 7:1 methanol to m-cresol molar ratio and 1.3 h−1 LHSV, the maximum yield of 97.2 % was obtained for 2,3,6-trimethylphenol, and the yield kept around 97 % even after the reaction time of 100 h.


m-Cresol 2,3,6-Trimethyphenol Fixed-bed Catalyst 



The authors are indebted to the Natural Science Foundation of China No. 21276050 and National Key Technology Support Program No. 2012BAD21B03 for financial supports.


  1. 1.
    Wang CM, Guan WH, Xie PH, Yun X, Li HR, Hu XB, Wang Y (2009) Catal Commun 5:725–727CrossRefGoogle Scholar
  2. 2.
    Li Y, Zhang P, Wu MZ, Liu W, Yi ZZ, Yang M, Zhang JC, Zhang GW, Bai ZH (2009) Chem Eng J 2:270–274CrossRefGoogle Scholar
  3. 3.
    Grabowska H, Teterycz H, Klimkiewicz R (2005) Res Chem Intermed 9:797–806CrossRefGoogle Scholar
  4. 4.
    Wang Y, Chen M, Chen P, Hu AX (2003) Fine Chem Intermed 33:17–18Google Scholar
  5. 5.
    Chary KVR, Ramesh K, Vidyasagar G, Rao VV (2003) J Mol Catal A 1–2:195–204CrossRefGoogle Scholar
  6. 6.
    Gandhe AR, Fernandes JB (2004) Catal Commun 2:89–94CrossRefGoogle Scholar
  7. 7.
    Gandhe AR, Naik SP, Kakodkar SB, Fernandes JB (2006) Catal Commun 5:285–288CrossRefGoogle Scholar
  8. 8.
    Grabowska H, Wrzyszcz J, Syper L (1999) Catal Lett 57:135–137CrossRefGoogle Scholar
  9. 9.
    Thomas M, Sankaran S, Biju M (2004) Appl Catal A 273:35–45CrossRefGoogle Scholar
  10. 10.
    Sree KK, Sugunand S (2002) Appl Catal A 230:245–251CrossRefGoogle Scholar
  11. 11.
    Lu P, Campbell CT, Xia YN (2013) Nano Lett 10:4957–4962CrossRefGoogle Scholar
  12. 12.
    Rezaei M, Alavi SM, Sahebdelfar S, Yan ZF (2008) Energy Fuels 4:2195–2202CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Sun W, Shi L, Sun Q (2012) Chin J Catal 6:1055–1060Google Scholar
  14. 14.
    Lu JL, Fu BS, Kung MC, Xiao GM, Elam JW, Kung HH, Stair PC (2012) Science 6073:205–1208Google Scholar
  15. 15.
    Sun LD, Sun P, Bao ZR, Sun Q, Shi L (2013) Reac Kinet Mech Cat 109:447–460CrossRefGoogle Scholar
  16. 16.
    Narayanan S, Kumari VD, Rao AS (1994) Appl Catal A. A 111:133–142Google Scholar
  17. 17.
    Churkin UV, Chvalyuk LA, Akhunova LV, Kirichenko GN, Spivak SI (1985) Reac Kinet Mech Cat 29:145–151CrossRefGoogle Scholar
  18. 18.
    Santessaria E, Diserio M, Ciambelli P (1990) Appl Catal A 64:101–117CrossRefGoogle Scholar
  19. 19.
    Sreekumar K, Sugunan S (2002) J Mol Catal A 185:259–268CrossRefGoogle Scholar
  20. 20.
    Shanta P, Chaturvedi S, Srinivasan V, Agarwal GS, Mehta CL (1994) Phys Rev Lett 72:447–1450CrossRefGoogle Scholar
  21. 21.
    Jeffrey GF, Andrew JG (1993) J Am Chem Soc 115:6277–6283CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Lei Niu
    • 1
  • Zunshan Li
    • 1
  • Feng Jiang
    • 1
  • Minghao Zhou
    • 1
  • Zhonghao Wang
    • 1
  • Guomin Xiao
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations