Reaction Kinetics, Mechanisms and Catalysis

, Volume 112, Issue 1, pp 159–171 | Cite as

Efficient Co3O4/SiO2 catalyst for the Baeyer–Villiger oxidation of cyclohexanone

  • Juan Zang
  • Yunjie Ding
  • Yanpeng Pei
  • Jia Liu
  • Ronghe Lin
  • Li Yan
  • Tao Liu
  • Yuan Lu


Silica-supported tricobalt tetraoxide (Co3O4/SiO2) catalysts prepared by the impregnation approach with different cobalt loadings were evaluated in the Baeyer–Villiger oxidation of cyclohexanone under Mukaiyama conditions. Among those catalysts with different cobalt contents, 0.5 wt% Co3O4/SiO2 afforded the best cyclohexanone conversion. Also, it provided comparable activity to regular cubic Co3O4, which was synthesized by a sophisticated hydrothermal method, under similarly mild conditions. Results of various physico-chemical characterizations, including XRD, HRTEM, TEM, H2-TPR and O2-TPD, revealed that highly dispersed Co3O4 catalysts showed higher reducibility than those lower dispersed catalysts and possessed more surface oxygen species which seemed reasonable to enhance catalytic activity. The application of Co3O4/SiO2 catalyst in oxidation of cyclohexanone is promising due to its relatively low-cost, high efficiency and excellent stability.


Co3O4/SiO2 Surface oxygen Baeyer–Villiger oxidation Cyclohexanone 


  1. 1.
    Baeyer A, Villiger V (1899) Ber Deut Bot Ges 32:3625–3633CrossRefGoogle Scholar
  2. 2.
    Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 412:423–425CrossRefGoogle Scholar
  3. 3.
    Corma A, Domine ME, Nemeth L, Valencia S (2002) J Am Chem Soc 124:3194–3195CrossRefGoogle Scholar
  4. 4.
    Renz M, Blasco T, Corma A, Fornés V, Jensen R, Nemeth L (2002) Chem Eur J 8:4708–4717CrossRefGoogle Scholar
  5. 5.
    Llamas R, Jiménez-Sanchidrián C, Ruiz JR (2007) Appl Catal B Environ 72:18–25CrossRefGoogle Scholar
  6. 6.
    Ruiz JR, Jiménez-Sanchidrián C, Llamas R (2006) Tetrahedron 62:11697–11703CrossRefGoogle Scholar
  7. 7.
    Kaneda K, Yamashita T (1996) Tetrahedron Lett 37:4555–4558CrossRefGoogle Scholar
  8. 8.
    Friess S, Farnham N (1950) J Am Chem Soc 72:5518–5521CrossRefGoogle Scholar
  9. 9.
    Murahashi SI, Oda Y, Naota T (1992) Tetrahedron Lett 23:7557–7560CrossRefGoogle Scholar
  10. 10.
    Giannandrea R, Mastrilli P, Nonile CF, Suranna GP (1994) J Mol Catal A Chem 94:27–36CrossRefGoogle Scholar
  11. 11.
    Subramanian H, Nettleton EG, Budhi S, Koodali RT (2010) J Mol Catal A Chem 330:66–72CrossRefGoogle Scholar
  12. 12.
    Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q, Wang Y, Takehira K (2005) J Mol Catal A Chem 236:99–106CrossRefGoogle Scholar
  13. 13.
    Raja R, Thomas JM, Sankar G (1999) Chem Commun 525–526Google Scholar
  14. 14.
    Kaneda K, Ueno S, lmanaka T (1995) J Mol Catal A Chem 102:135–138CrossRefGoogle Scholar
  15. 15.
    Kaneda K, Ueno S, Imanaka T (1994) Chem Commun 797–98Google Scholar
  16. 16.
    Chisem IC, Chisem J, Clark JH (1998) New J Chem 22:81–82CrossRefGoogle Scholar
  17. 17.
    Li YF, Guo MQ, Yin SF, Chen L, Zhou YB, Qiu RH, Au CT (2013) Carbon 55:269–275CrossRefGoogle Scholar
  18. 18.
    Nabae Y, Rokubuichi H, Mikuni M, Kuang Y, Hayakawa T, Kakimoto M-a (2013) ACS Catalysis 3:230–236CrossRefGoogle Scholar
  19. 19.
    Kawabata T, Fujisaki N, Shishido T, Nomura K, Sano T, Takehira K (2006) J Mol Catal A Chem 253:279–289CrossRefGoogle Scholar
  20. 20.
    Li XG, Wang F, Zhang H, Wang C, Song GQ (1996) Synthetic Commun 26:1613–1616CrossRefGoogle Scholar
  21. 21.
    Pagel HA, Noyce WK, Kelley MT (1935) J Am Chem Soc 57:2252–2253CrossRefGoogle Scholar
  22. 22.
    Li YF, Guo MQ, Yin SF, Chen L, Zhou YB, Qiu RH, Au CT (2013) Reac Kinet Mech Cat 109:525–535CrossRefGoogle Scholar
  23. 23.
    Puskas I, Fleisch TH, Full PR, Kaduk JA, Marshall CL, Meyers BL (2006) Appl Catal A Gen 311:146–154CrossRefGoogle Scholar
  24. 24.
    Zhu J, Kailasam K, Fischer A, Thomas A (2011) ACS Catalysis 1:342–347CrossRefGoogle Scholar
  25. 25.
    Ma CY, Zhen M, Li JJ, Jin YG, Cheng J, Lu GQ, Hao ZP, Qiao SZ (2010) J Am Chem Soc 132:2608–2613CrossRefGoogle Scholar
  26. 26.
    Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Surf Sci 86:335–344CrossRefGoogle Scholar
  27. 27.
    Yu Y, Takei T, Ohashi H, He H, Zhang X, Haruta M (2009) J Catal 267:121–128CrossRefGoogle Scholar
  28. 28.
    Luo J, Meng M, Li X, Zha Y, Hu T, Xie Y, Zhang J (2008) J Catal 254:310–324CrossRefGoogle Scholar
  29. 29.
    Zhao Z, Jin R, Bao T, Lin X, Wang G (2011) Appl Catal B Environ 110:154–163CrossRefGoogle Scholar
  30. 30.
    Li P, He C, Cheng J, Ma CY, Dou BJ, Hao ZP (2011) Appl Catal B Environ 101:570–579CrossRefGoogle Scholar
  31. 31.
    Lente G (2013) ACS Catalysis 3:381–382CrossRefGoogle Scholar
  32. 32.
    Conte M, Miyamura H, Kobayashi S, Chechik V (2010) Chem Commun 46:145CrossRefGoogle Scholar
  33. 33.
    McNesby JR, Heller CA (1954) Chem Rev 54:325–346CrossRefGoogle Scholar
  34. 34.
    Kishore D, Rodrigues AE (2008) Appl Catal A Gen 345:104–111CrossRefGoogle Scholar
  35. 35.
    Tang Q, Wang Y, Liang J, Wang P, Zhang Q, Wan H (2004) Chem Commun 440–441Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Juan Zang
    • 1
    • 3
  • Yunjie Ding
    • 1
    • 2
  • Yanpeng Pei
    • 1
    • 3
  • Jia Liu
    • 1
    • 3
  • Ronghe Lin
    • 1
  • Li Yan
    • 1
  • Tao Liu
    • 1
  • Yuan Lu
    • 1
  1. 1.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  3. 3.Graduate School of Chinese Academy of ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations