Reaction Kinetics, Mechanisms and Catalysis

, Volume 111, Issue 2, pp 475–487 | Cite as

Theoretical interpretation of the role of the ionic liquid phase in the (R)-Ru-BINAP catalyzed hydrogenation of methylacetoacetate

  • Pavel Dytrych
  • Petr Kluson
  • Morwena Slater
  • Olga Solcova


Recently, the work focusing on the role of alkyl chain length in the N[R,222][Tf2N] ionic liquids and its reflection in the kinetic parameters of stereoselective hydrogenation of methylacetoacetate over (R)-[RuCl(binap)(p-cymene)]Cl complex was reported. Irregular trends in the principle parameter of enantioselectivity were observed. Here, a possible theoretical explanation of such irregular trends elucidated with the help of molecular simulations methods is presented. A stepwise approach is proposed for evaluating the energetically most stable conformers of a series of individual N[R,222][Tf2N] for the interpretation of selectivity-structure effects observed experimentally. Initially, Monte Carlo molecular mechanics was used followed by a semi-empirical PM3 method to elucidate also the characteristic thermodynamic functions of state and theoretical molecular spectra. The density functional theory was finally applied. The specific absolute entropy data revealed that due to the partition of the cation and anion twisted closer approach the ionic liquids N[8,222][Tf2N] and N[12,222][Tf2N] may stabilize the structures of the (R)-[RuCl(binap)(p-cymene)]Cl complex.


Ionic liquids Chiral catalysis Ru-BINAP complex DFT PM3 N[8,222][Tf2N] N[12,222][Tf2N] 



Authors gratefully acknowledge the financial contribution of the Ministry of Industry and Trade of the Czech Republic, Project Grant No. FR-TI3/057. Academy of Sciences of the Czech Republic is also cordially acknowledged for supporting the bilateral CZ-UK cooperation project with Bangor University, UK.


  1. 1.
    Noyori R (2003) Adv Synth Catal 345:15CrossRefGoogle Scholar
  2. 2.
    McDonald AR, Muller C, Voght D (2008) Green Chem 10:424CrossRefGoogle Scholar
  3. 3.
    Blaser HU, Jallet HP, Spindler F (1996) J Mol Catal A 107:85CrossRefGoogle Scholar
  4. 4.
    Bartek L, Kluson P, Cerveny L (2005) Chem Listy 99:157Google Scholar
  5. 5.
    Jahjah M, Alame M, Pellet-Rostaing P, Lemaire M (2007) Tetrahedron Asymm 19:2305CrossRefGoogle Scholar
  6. 6.
    Wolfson A, Vankelecom IFJ, Geresh S, Jacobs PA (2004) J Mol Catal A 217:21CrossRefGoogle Scholar
  7. 7.
    Zsigmond A, Notheisz F, Kluson P, Floris T (2010) In: Barbaro P, Liguori F (eds) Heterogenized homogeneous catalysts for fine chemicals production—catalysis by metal complexes, vol 34. Springer, BerlinGoogle Scholar
  8. 8.
    Floris T, Kluson P, Muldoon MJ, Pelantova H (2010) Catal Let 134:279CrossRefGoogle Scholar
  9. 9.
    Floris T, Kluson P, Pelantova H, Bartek L (2009) Appl Catal A 366:160CrossRefGoogle Scholar
  10. 10.
    Cerna I, Kluson P, Bendova M, Pekarek T, Floris T, Pelantova H (2011) Chem Eng Proc 50:264CrossRefGoogle Scholar
  11. 11.
    Floris T, Kluson P, Slater M (2011) React Kinet Catal Mech 102:67CrossRefGoogle Scholar
  12. 12.
    Hallett JP, Welton T (2011) Chem Rev 111:3508CrossRefGoogle Scholar
  13. 13.
    Olivier-Bourbigou H, Magna L, Morvan D (2010) Appl Catal A 373:1CrossRefGoogle Scholar
  14. 14.
    Picquet M, Poinsot D, Stutzmann S, Tkatchenko I, Tommasi I, Wasserscheid P, Zimmermann J (2004) Topics Catal 29:139CrossRefGoogle Scholar
  15. 15.
    Wasserscheid P, Keim W (2000) Angewandte Chem Int Ed 39:3772CrossRefGoogle Scholar
  16. 16.
    Frisch AC, Webb PB, Zhao G, Muldoon MJ, Pogorzelec PJ, Cole-Hamilton DJ (2007) Dalton Trans 47:5531CrossRefGoogle Scholar
  17. 17.
    Jutz F, Andanson JM, Baiker A (2009) J Catal 268:356CrossRefGoogle Scholar
  18. 18.
    Allouche AR (2011) J Comp Chem 32(174):182Google Scholar
  19. 19.
    Halgren TA (1996) J Comp Chem 490:519Google Scholar
  20. 20.
    Hehre WJ (2003) A guide to molecular mechanics and quantum chemical calculations. Wavefunction Inc, IrvineGoogle Scholar
  21. 21.
    Young D (2001) Computational chemistry. Wiley–Interscience, New York, p 330CrossRefGoogle Scholar
  22. 22.
    Frisch MJ et al (2003) Gaussian 03. Gaussian Inc, WallingfordGoogle Scholar
  23. 23.
    Young D (2001) Computational chemistry. Wiley–Interscience, New York, p 336CrossRefGoogle Scholar
  24. 24.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Johansson KM, Izgorodina EI, Forsyth M, MacFarlane DR, Seddon KR (2008) Phys Chem Chem Phys 10:2972CrossRefGoogle Scholar
  26. 26.
    Hanke CG, Price SL, Lynden-Bell RM (2001) Mol Phys 99:801CrossRefGoogle Scholar
  27. 27.
    Bhargava BL, Balasubramanian S (2008) J Phys Chem B 112:7566CrossRefGoogle Scholar
  28. 28.
    Wang Y, Voth GA (2005) J Am Chem Soc 127:12192CrossRefGoogle Scholar
  29. 29.
    Bhargava BL, Klein ML (2009) Soft Matter 5:3475CrossRefGoogle Scholar
  30. 30.
    Berg RW (2007) Monatshefte Chem 138:1045CrossRefGoogle Scholar
  31. 31.
    Costa Gomes MF, Canongia Lopes JN, Padua AAH (2009) In: Kirchner B (ed) Ionic liquids—topics in current chemistry, vol 290. Springer, BerlinGoogle Scholar
  32. 32.
    Kirchner B (2009) In: Kirchner B (ed) Ionic liquids—topics in current chemistry, vol 290. Springer, BerlinGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Pavel Dytrych
    • 1
  • Petr Kluson
    • 1
  • Morwena Slater
    • 2
  • Olga Solcova
    • 1
  1. 1.Institute of Chemical Process Fundamentals ASCRPrague 6Czech Republic
  2. 2.School of Chemistry, Bangor UniversityBangorUK

Personalised recommendations