Skip to main content
Log in

Silver nanoparticles obtained by laser ablation as the active component of Ag/SiO2 catalysts for CO oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Composite systems comprising a macroporous SiO2 support and silver nanoparticles preliminarily prepared by laser ablation in various liquids were synthesized and studied. Investigation of the catalytic properties of the synthesized composite catalysts demonstrated that, irrespective of particle size, non-interacting metallic silver particles in SiO2 matrix are not active toward the low temperature oxidation of CO, their activity appearing only at temperatures above 300 °C. A combination of X-ray photoelectron spectroscopy and transmission electron microscopy allowed revealing that the activation redox treatment (O2-500 °C/H2-200 °C) of such particles in macroporous SiO2 matrix leads to the structures resembling surface silver silicates AgSiOx, which are active in CO oxidation at temperatures above 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Royer S, Duprez D (2011) ChemCatChem 3:24–65

    Article  CAS  Google Scholar 

  2. Satsuma A, Osaki K, Yanagihara M, Ohyama J, Shimizu K (2013) Appl Catal B 132–133:511–518

    Google Scholar 

  3. Liu L, Qiao B, He Y, Zhou F, Yang B, Deng Y (2012) J Catal 294:29–36

    Article  CAS  Google Scholar 

  4. Carrettin S, Concepción P, Corma A, López Nieto JM, Puntes VF (2004) Angew Chem Int Ed 43:2538–2540

    Article  CAS  Google Scholar 

  5. Huang J, Xue C, Wang B, Guo X, Wang S (2013) React Kinet Mech Cat 108:403–416

    Article  CAS  Google Scholar 

  6. Glaspell G, Hassan HA, Elzatahry A, Abdalsayed V, El-Shall MS (2008) Top Catal 47:22–31

    Article  CAS  Google Scholar 

  7. Ortiz-Soto LB, Alexeev OS, Amiridis MD (2006) Langmuir 22:3112–3117

    Article  CAS  Google Scholar 

  8. Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196:293–301

    Article  CAS  Google Scholar 

  9. Haruta M (2002) Cattech 6:102–115

    Article  CAS  Google Scholar 

  10. Qu Z, Huang W, Cheng M, Bao X (2005) J Phys Chem B 109:15842–15848

    Article  CAS  Google Scholar 

  11. Qu Z, Huang W, Zhou S, Zheng H, Liu X, Cheng M, Bao X (2005) J Catal 234:33–36

    Article  CAS  Google Scholar 

  12. Yu L, Shi Y, Zhao Z, Yin H, Wei Y, Liu J, Kang W, Jiang T, Wang A (2011) Catal Commun 12:616–620

    Article  CAS  Google Scholar 

  13. Zhang X, Qu Z, Li X, Wen M, Quan X, Ma D, Wu J (2010) Sep Purif Technol 72:395–400

    Article  CAS  Google Scholar 

  14. Wang X, Han X, Huang Y, Sun J, Xu S, Bao X (2012) J Phys Chem C 116:25846–25851

    Article  CAS  Google Scholar 

  15. Zhang X, Qu Z, Yu F, Wang Y (2013) J Catal 297:264–271

    Article  CAS  Google Scholar 

  16. Zhang X, Qu Z, Yu F, Wang Y, Zhang X (2013) J Mol Catal. A 370:160–166

    CAS  Google Scholar 

  17. Liu H, Ma D, Blackley RA, Zhou W, Bao X (2008) Chem Commun 0:2677–2679

    Article  Google Scholar 

  18. Tian D, Yong G, Dai Y, Yan X, Liu S (2009) Catal Lett 130:211–216

    Article  CAS  Google Scholar 

  19. Jin L, Qian K, Jiang Z, Huang W (2007) J Mol Catal. A 274:95–100

    CAS  Google Scholar 

  20. Zhang X, Qu Z, Li X, Zhao Q, Wang Y, Quan X (2011) Catal Commun 16:11–14

    Article  CAS  Google Scholar 

  21. Afanasev DS, Yakovina OA, Kuznetsova NI, Lisitsyn AS (2012) Catal Commun 22:43–47

    Article  CAS  Google Scholar 

  22. Izaak TI, Martynova DO, Stonkus OA, Slavinskaya EM, Boronin AI (2013) J Sol Gel Sci Technol. doi:10.1007/s10971-10013-12977-x

  23. Qu ZP, Cheng MJ, Dong XL, Bao XH (2004) Catal Today 93–95:247–255

    Article  Google Scholar 

  24. Simakin AV, Voronov VV, Shafeev GA (2004) In: Proceedings of the GPI 60:83–107

    Google Scholar 

  25. Svetlichniy VA, Izaak TI, Babkina OV, Shabalina AV (2009) In: Proceedings of the High School Physics 52:110–115

    Google Scholar 

  26. Nakanishi K, Soga N (1991) J Am Ceram Soc 74:2518

    Article  CAS  Google Scholar 

  27. Nakanishi K, Soga N (1992) J Non-Cryst Solids 139:1

    Article  CAS  Google Scholar 

  28. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray Photoelectron Spectroscopy. Perkin Elmer Corporation, Minnesota

  29. Kibis LS, Avdeev VI, Koscheev SV, Boronin AI (2010) Surf Sci 604:1185–1192

    Article  CAS  Google Scholar 

  30. Svintsitskiy DA, Stadnichenko AI, Demidov DV, Koscheev SV, Boronin AI (2011) Appl Surf Sci 257:8542–8549

    Article  CAS  Google Scholar 

  31. Slavinskaya EM, Stonkus OA, Gulyaev RV, Ivanova AS, Zaikovskii VI, Kuznetsov PA, Boronin AI (2011) Appl Catal. A 401:83–97

    CAS  Google Scholar 

  32. Podyacheva OY, Ismagilov ZR, Boronin AI, Kibis LS, Slavinskaya EM, Noskov AS, Shikina NV, Ushakov VA, Ischenko AV (2012) Catal Today 186:42–47

    Article  CAS  Google Scholar 

  33. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Biophotonics Int 11:36–42

    Google Scholar 

  34. Hu J, Lee W, Cai W, Tong L, Zeng H (2007) Nanotechnology 18:185710

    Article  Google Scholar 

  35. Briggs D, Seah MP (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, Chichester

    Google Scholar 

  36. Waterhouse GIN, Bowmaker GA, Metson JB (2002) Surf Interface Anal 33:401–409

    Article  CAS  Google Scholar 

  37. Kaushik VK (1991) J Electron Spectrosc Relat Phenom 56:273–277

    Article  CAS  Google Scholar 

  38. Tjeng LH, Meinders MBJ, van Elp J, Ghijsen J, Sawatzky GA, Johnson RL (1990) Phys Rev B 41:3190–3199

    Article  CAS  Google Scholar 

  39. Bates CW Jr, Wertheim GK, Buchanan DNE (1979) Phys Lett 72A:178–179

    CAS  Google Scholar 

  40. Leiro J, Minni E, Suoninen E (1983) J Phys F Met Phys 13:215–221

    Article  CAS  Google Scholar 

  41. Tachibana Y, Kusunoki K, Watanabe T, Hashimoto K, Ohsaki H (2003) Thin Solid Films 442:212–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the RFBR Grant Number 12-03-90825.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Boronin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibis, L.S., Stonkus, O.A., Martynova, D.O. et al. Silver nanoparticles obtained by laser ablation as the active component of Ag/SiO2 catalysts for CO oxidation. Reac Kinet Mech Cat 110, 343–357 (2013). https://doi.org/10.1007/s11144-013-0617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0617-7

Keywords

Navigation