Reaction Kinetics, Mechanisms and Catalysis

, Volume 110, Issue 1, pp 163–175 | Cite as

Kinetic study of the esterification of acetic acid and n-amyl alcohol catalyzed by H3PW6Mo6O40 immobilized on silylated palygorskite

  • Guixian Li
  • Ruina Mu
  • Zongliang Fan
  • Yazhen Li
  • Yang Liu


Modified palygorskite with 3-aminopropyltriethoxysilane (KH550) was used as the carrier to immobilize a 12-heteropolyacid of molybdenum and tungsten. The prepared catalyst was characterized by FT-IR, XRD, XPS, BET and TG. The kinetic behavior of heterogeneous esterification of acetic acid with n-amyl alcohol over the catalyst was investigated. The nonideality of the liquid phase was considered by using activities instead of molar fractions. The activity coefficients have been calculated by using the group contribution method UNIFAC. The experimental results showed that the reaction is controlled by chemical steps rather than external and internal mass transfer steps. Experimental data fitted well to the pseudo-homogeneous (PH) model. The temperature dependency of the equilibrium constant and the reaction rate constant were found. It indicated that the heat of reaction is 7.33 kJ mol−1. The new rate equation gave a good fit to the data and was able to describe the behavior of the system.


Esterification 12-Heteropolyacid of molybdenum and tungsten Silylated palygorskite n-Amyl acetate Kinetic modeling 


  1. 1.
    Ali SH, Tarakmah A, Merchant SQ et al (2007) Chem Eng Sci 62:3197–3217CrossRefGoogle Scholar
  2. 2.
    Weissermel K, Arpe H-J (1997) Industrial organic chemistry, 3rd edn. VCH, New York, p 289CrossRefGoogle Scholar
  3. 3.
    Venkateswarlu K, Sinha R, Rao RJ (1976) J Chem Petro 3–10Google Scholar
  4. 4.
    Altiokka MR, Hosgün HL (2007) Ind Eng Chem Res 46:1058–1062CrossRefGoogle Scholar
  5. 5.
    Lilja J, Aumo J, Salmi T et al (2002) Appl Catal A: Gen 228:253–267CrossRefGoogle Scholar
  6. 6.
    Zhang LX, Jin QZ, Shan L et al (2010) Appl Clay Sci 47:229–234CrossRefGoogle Scholar
  7. 7.
    Lilja J, Murzin DY, Salmi T et al (2002) J Mol Catal A: Chem 182–183:555–563CrossRefGoogle Scholar
  8. 8.
    Ju IB, Lim H-W, Lim W et al (2011) J Chem Eng 168:293–302CrossRefGoogle Scholar
  9. 9.
    Altiokka MR, itak AC (2003) Appl Catal A: Gen 239:141–148CrossRefGoogle Scholar
  10. 10.
    Tanabe K, Misono M, Hattori H (1989) New solid acid bases. Kodansha/Elsevier Science, Tokyo/AmsterdamGoogle Scholar
  11. 11.
    Ganapati DY, Pranav HM (1994) Ind Eng Chem Res 33:2198–2208CrossRefGoogle Scholar
  12. 12.
    Xu JP, Chuang KT (1996) Can J Chem Eng 74:493–500CrossRefGoogle Scholar
  13. 13.
    Liu W-T, Tan C-S (2001) Ind Eng Chem Res 40:3281–3286CrossRefGoogle Scholar
  14. 14.
    Lee MJ, Wu HT, Lin HM (2000) Ind Eng Chem Res 39:4094–4099CrossRefGoogle Scholar
  15. 15.
    Lee MJ, Wu HT, Kang CH et al (1999) J Chin Inst Chem Eng 30:117–122Google Scholar
  16. 16.
    Misono M, Mizuno N, Katamura K et al (1982) Bull Chem Soc Jpn 55:400–406CrossRefGoogle Scholar
  17. 17.
    Kekre SY, Gopala RM (1969) Ind Chem Eng 4:115Google Scholar
  18. 18.
    Yadav GD, Kirthivasan N (1997) Appl Catal A: Gen 154:29–53CrossRefGoogle Scholar
  19. 19.
    Madhusudhan PR, Wolfson A, Kababya S et al (2005) J Catal 232:210–225CrossRefGoogle Scholar
  20. 20.
    Zhang LX, Jin QZ, Huang JH et al (2010) Appl Surf Sci 256:5911–5917CrossRefGoogle Scholar
  21. 21.
    Baronett G, Thomas H, Querin CA (2001) Appl Catal A: Gen 217:131–141CrossRefGoogle Scholar
  22. 22.
    Ruan YH, Liu YF, Liu ZC (2004) J Chin Catal 25:948–954Google Scholar
  23. 23.
    Tarlani A, Abedini M, Khabaz M et al (2005) J Colloid Interf Sci 292:486–492CrossRefGoogle Scholar
  24. 24.
    Madhusudhan RP, Wolfson A, Kababya S et al (2005) J Catal 232:210–225CrossRefGoogle Scholar
  25. 25.
    Pizzio LR, Caceres CV, Balanco MN (1998) Appl Catal A: Gen 167:283–287CrossRefGoogle Scholar
  26. 26.
    Chakrabarti A, Sharma MM (1993) React Polym 20:1–45CrossRefGoogle Scholar
  27. 27.
    Ahmed OS, Dutta DK (2003) Thermochim Acta 395:209–216CrossRefGoogle Scholar
  28. 28.
    Zhang HB, Zhang K, Yuan ZY et al (1998) J Nat Gas Chem 7:336–345Google Scholar
  29. 29.
    Lu JL, Li XH, Yang SJ (2002) Appl Chem Ind 31:8–9Google Scholar
  30. 30.
    Dong JH, Yang SJ (2003) Chem Propellant Polym Mater 1:18–19Google Scholar
  31. 31.
    Sun MZ, Qi YT, Yuan XD et al (2003) Speciality Petrochem 1:4–7Google Scholar
  32. 32.
    Jin L, Zhu L (2011) Chem Bioeng 28:51–53Google Scholar
  33. 33.
    Yu W, Hidajat K, Ray AK (2004) Appl Catal A: Gen 260:191–205CrossRefGoogle Scholar
  34. 34.
    Darge O, Thyrion FC (1993) J Chem Technol Biotechnol 58:351–355CrossRefGoogle Scholar
  35. 35.
    Qu YX, Peng SJ, Wang S et al (2009) J Chin Chem Eng 17:773–780CrossRefGoogle Scholar
  36. 36.
    Seo Y, Hong WH (2000) J Chem Eng Jpn 33:128–133CrossRefGoogle Scholar
  37. 37.
    Teo HTR, Saha B (2004) J Catal 228:174–182CrossRefGoogle Scholar
  38. 38.
    Mostafa V, Gholamreza V-N, Morteza A (2012) Can J Chem Eng 3:37–44Google Scholar
  39. 39.
    Aage F, Russell LJ, John MP (1975) J AIChE 21:1086–1099CrossRefGoogle Scholar
  40. 40.
    Emine S, Ferhan SA (2010) Reac Kinet Mech Cat 99:125–134Google Scholar
  41. 41.
    Moffat JB (2001) Metal-oxygen clusters, surface and catalytic properties of heteropoly oxometalates. Kluwer, New YorkGoogle Scholar
  42. 42.
    ElifÖdes A, Mehmet RA (2011) Appl Catal A: Gen 396:14–19CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Guixian Li
    • 1
  • Ruina Mu
    • 1
  • Zongliang Fan
    • 1
  • Yazhen Li
    • 1
  • Yang Liu
    • 1
  1. 1.College of Petrochemical EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations