Reaction Kinetics, Mechanisms and Catalysis

, Volume 110, Issue 1, pp 5–13 | Cite as

Formation and dissociation of gas hydrate in terms of chemical kinetics

  • Valeriy A. Vlasov


Based on the general theory of chemical kinetics, a theoretical model was developed for the formation and dissociation of a gas hydrate. An expression is derived for the driving force of the formation and dissociation. The presented theory was compared with other well-known theoretical models and, from the available experimental data, the temperature dependence was determined for the methane hydrate formation and dissociation rate constants.


Gas hydrate Kinetics Phase change Phase equilibria Methane 

List of symbols



Affinity, J/mol


Molar concentration of gas close to the interface, mol/m3


Activation energy of the gas hydrate formation reaction at an interface, J/mol


Activation energy of the gas hydrate dissociation reaction at the interface, J/mol


Fugacity of the gas, Pa


Kinetic parameter, mol/(m2 Pa s)


Rate constant of the gas hydrate formation reaction at the interface, m3n+1/(mol n s)

\( k^{\prime} \)

Empirical coefficient, 1/(Pa s)

\( K_0 \)

Pre-exponential factor in the Arrhenius equation, m3n+1/(mol n s)


Rate constant of the gas hydrate dissociation reaction at the interface, m/s


Pre-exponential factor in the Arrhenius equation, m/s


Hydration number


Amount of methane, used in the formation of the hydrate, mol


Amount of the gas, mol

\( n_{\text{H}} \)

Amount of methane present in the hydrate, mol

\( n_{\text{h}} \)

Amount of gas hydrate, mol

\( n_{\text{w}} \)

Amount of water, mol

\( p \)

Pressure, Pa

\( R \)

Gas constant, J/(mol K)

\( R_{\text{dis}} \)

Rate of the gas hydrate dissociation reaction at the interface, mol/(m2 s)

\( R_{\text{form}} \)

Rate of the gas hydrate formation reaction at the interface, mol/(m2 s)

\( r \)

Rate of change of moles of the substance at the interface during the gas hydrate formation/dissociation reactions, mol/(m2 s)

\( S \)

Interfacial area, m2

\( T \)

Temperature, K

\( t \)

Time, s

\( Z \)

Compressibility factor

Greek letters

\( \upalpha \)

Experimental constant, m2/mol

\( \upmu \)

Chemical potential, J/mol

\( \upchi \)

Molar density of gas hydrate, mol/m3

\( \upomega \)

Molar density of water, mol/m3


\( \text{eq} \)

Equilibrium between water, gas hydrate and gas




Gas hydrate





This work was supported by the Russian Foundation for Basic Research (project No. 10-05-00270) and the Council on Grants of the President of the Russian Federation (Grant NSh-5582.2012.5).


  1. 1.
    Sloan ED (2003) Nature 426:353–363CrossRefGoogle Scholar
  2. 2.
    Gudmundsson JC, Børrehaug A (1996) In: Proceedings of the 2nd international conference on natural gas hydrates, Toulouse, France, pp 415–422Google Scholar
  3. 3.
    Gudmundsson JS, Andersson V, Levik OI, Mork M (2000) Ann N Y Acad Sci 912:403–410CrossRefGoogle Scholar
  4. 4.
    Thomas S, Dawe RA (2003) Energy 28:1461–1477CrossRefGoogle Scholar
  5. 5.
    Vorotyntsev VM, Malyshev VM (2011) Russ Chem Rev 80:971–991CrossRefGoogle Scholar
  6. 6.
    Chatti I, Delahaye A, Fournaison L, Petitet J-P (2005) Energy Convers Manage 46:1333–1343CrossRefGoogle Scholar
  7. 7.
    Davidson DW, Garg SK, Gough SR, Handa YP, Ratclife CI, Ripmeester JA, Tse JS, Lawson WF (1986) Geochim Cosmochim Acta 50:619–623CrossRefGoogle Scholar
  8. 8.
    Yakushev VS, Istomin VA (1992) Gas hydrate self-preservation effect. In: Maeno N, Hondoh T (eds) Physics and chemistry of ice. Hokkaido University Press, Sapporo, pp 136–140Google Scholar
  9. 9.
    Stern LA, Circone S, Kirby SH, Durham WB (2001) J Phys Chem B 105:1756–1762CrossRefGoogle Scholar
  10. 10.
    Takeya S, Ebinuma T, Uchida T, Nagao J, Narita H (2002) J Cryst Growth 237–239:379–382CrossRefGoogle Scholar
  11. 11.
    Komai T, Kang S-P, Yoon J-H, Yamamoto Y, Kawamura T, Ohtake M (2004) J Phys Chem B 108:8062–8068CrossRefGoogle Scholar
  12. 12.
    Kuhs WF, Genov G, Staykova DK, Hansen T (2004) Phys Chem Chem Phys 6:4917–4920CrossRefGoogle Scholar
  13. 13.
    Ogienko AG, Kurnosov AV, Manakov AY, Larionov EG, Ancharov AI, Sheromov MA, Nesterov AN (2006) J Phys Chem B 110:2840–2846CrossRefGoogle Scholar
  14. 14.
    Istomin VA, Yakushev VS (1992) Gas hydrates in natural conditions. Nedra, Moscow (in Russian)Google Scholar
  15. 15.
    Melnikov VP, Nesterov AN, Reshetnikov AM, Zavodovsky AG (2009) Chem Eng Sci 64:1160–1166CrossRefGoogle Scholar
  16. 16.
    Melnikov VP, Nesterov AN, Reshetnikov AM, Istomin VA, Kwon VG (2010) Chem Eng Sci 65:906–914CrossRefGoogle Scholar
  17. 17.
    Melnikov VP, Nesterov AN, Reshetnikov AM, Istomin VA (2011) Chem Eng Sci 66:73–77CrossRefGoogle Scholar
  18. 18.
    Ohno H, Oyabu I, Iizuka Y, Hondoh T, Narita H, Nagao J (2011) J Phys Chem A 115:8889–8894CrossRefGoogle Scholar
  19. 19.
    Vlasov VA, Zavodovsky AG, Madygulov MSh, Reshetnikov AM (2011) Earth Cryosphere 15(4):72–74Google Scholar
  20. 20.
    Melnikov VP, Nesterov AN, Podenko LS, Reshetnikov AM, Shalamov VV (2012) Chem Eng Sci 71:573–577CrossRefGoogle Scholar
  21. 21.
    Vysniauskas A, Bishnoi PR (1983) Chem Eng Sci 38:1061–1072CrossRefGoogle Scholar
  22. 22.
    Vysniauskas A, Bishnoi PR (1985) Chem Eng Sci 40:299–303CrossRefGoogle Scholar
  23. 23.
    Kim HC, Bishnoi PR, Heidemann RA, Rizvi SSH (1987) Chem Eng Sci 42:1645–1653CrossRefGoogle Scholar
  24. 24.
    Ullerich JW, Selim MS, Sloan ED (1987) AIChE J 33:747–752CrossRefGoogle Scholar
  25. 25.
    Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Chem Eng Sci 42:2647–2658CrossRefGoogle Scholar
  26. 26.
    Jamaluddin AKM, Kalogerakis N, Bishnoi PR (1989) Can J Chem Eng 67:948–954CrossRefGoogle Scholar
  27. 27.
    Skovborg P, Rasmussen P (1994) Chem Eng Sci 49:1131–1143CrossRefGoogle Scholar
  28. 28.
    Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) J Phys Chem B 107:10299–10311CrossRefGoogle Scholar
  29. 29.
    Kuhs WF, Staykova DK, Salamatin AN (2006) J Phys Chem B 110:13283–13295CrossRefGoogle Scholar
  30. 30.
    Ribeiro CP, Lage PLC (2008) Chem Eng Sci 63:2007–2034CrossRefGoogle Scholar
  31. 31.
    Upadhyay SK (2006) Chemical kinetics and reaction dynamics. Springer, New York; Anamaya Publishers, New DelhiGoogle Scholar
  32. 32.
    Englezos P, Kalogerakis NE, Bishnoi PR (1990) J Incl Phenom 8:89–101CrossRefGoogle Scholar
  33. 33.
    Bishnoi PR, Natarajan V (1996) Fluid Phase Equilib 117:168–177CrossRefGoogle Scholar
  34. 34.
    Kashchiev D, Firoozabadi A (2002) J Cryst Growth 243:476–489CrossRefGoogle Scholar
  35. 35.
    Kashchiev D, Firoozabadi A (2003) J Cryst Growth 250:499–515CrossRefGoogle Scholar
  36. 36.
    de Donder T, van Rysselberghe P (1936) Thermodynamic theory of affinity: a book of principles. Stanford University Press, StanfordGoogle Scholar
  37. 37.
    Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans–Green & Co., LondonGoogle Scholar
  38. 38.
    Kashchiev D, Firoozabadi A (2002) J Cryst Growth 241:220–230CrossRefGoogle Scholar
  39. 39.
    Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, ChichesterGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Institute of the Earth CryosphereSiberian Branch of the Russian Academy of SciencesTyumenRussian Federation

Personalised recommendations