Reaction Kinetics, Mechanisms and Catalysis

, Volume 108, Issue 1, pp 193–204 | Cite as

Preparation of Pd nanoparticles deposited on a polyaniline/multiwall carbon nanotubes nanocomposite and their application in the Heck reaction



In this work, we described the synthesis of a nanocatalyst, which consists of polyaniline (PANI)/multiwall carbon nanotubes (MWCNTs) and the deposited Pd nanoparticles. FT-IR, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis (TG) and transmission electron microscopy were used to characterize the nanocatalyst. The interaction between PANI and MWCNTs have been explained according to the results of the FT-IR and XRD analysis. This complex was an efficient catalyst for the Heck reactions of acrylic acid with aryl iodides in air at low temperature (60 °C) using 0.9 mol% Pd of the catalyst. Furthermore, it also exhibited catalytic properties for the bromide and activated chlorobenzene. The yield of cinnamic acid was 71 % for the Heck reaction of acrylic acid with iodobenzene even though the complex was used nine times.


Polyaniline MWCNTs Pd nanoparticles Heck reaction 


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384:147CrossRefGoogle Scholar
  3. 3.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787CrossRefGoogle Scholar
  4. 4.
    Odon TW, Huang J, Kim P, Lieber CM (1998) Nature 391:62CrossRefGoogle Scholar
  5. 5.
    Kong J, Franklin NR, Zhou C, Chaplines MG, Peng S, Cho K (2000) Science 287:622CrossRefGoogle Scholar
  6. 6.
    Miyako E, Nagata H, Hirano K, Makita Y, Hirotsu T (2007) Nanotechnology 18:475103CrossRefGoogle Scholar
  7. 7.
    Dieckmann G, Dalton A, Johnson P, Razal J, Chen J, Giordano G, Munoz E, Musselman I, Baughman R, Draper R (2003) J Am Chem Soc 125:1770CrossRefGoogle Scholar
  8. 8.
    Song S, Yang H, Rao R, Liu H, Zhang A (2010) Appl Catal A 375:265CrossRefGoogle Scholar
  9. 9.
    Neelgund GM, Oki A (2011) Appl Catal A 399:154CrossRefGoogle Scholar
  10. 10.
    Qiu B, Lin Z, Wang J, Chen Z, Chen J, Chen G (2009) Talanta 78:76CrossRefGoogle Scholar
  11. 11.
    Sheng Q, Zheng J (2009) Bioelectron 24:1621CrossRefGoogle Scholar
  12. 12.
    Ragupathy D, Gopalan AI, Lee KP (2009) Electrochem Commun 11:397CrossRefGoogle Scholar
  13. 13.
    Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009CrossRefGoogle Scholar
  14. 14.
    Polshettiwar V, Molnar A (2007) Tetrahedron 63:6949CrossRefGoogle Scholar
  15. 15.
    C. Amatore, A. Jutand, Acc (2000) Chem Res 33: 314Google Scholar
  16. 16.
    Clark JH, Macquarries DJ (2000) Green Chem 2:53CrossRefGoogle Scholar
  17. 17.
    Yamada MA, Takeda K, Takahashi H (2004) Tetrahedron 60:4097CrossRefGoogle Scholar
  18. 18.
    Kalbasi RJ, Mosaddegh N (2012) Mater Res Bull 47:160CrossRefGoogle Scholar
  19. 19.
    Islam RU, Witcomb MJ, Mallick K (2010) Catal Commun 12:116CrossRefGoogle Scholar
  20. 20.
    Mondal J, Modak A, Bhaumik A (2011) J Mol Catal A Chem 350:40CrossRefGoogle Scholar
  21. 21.
    Zhu J, Zhou JH, Zhao TJ (2009) Appl Catal A Gen 352:243CrossRefGoogle Scholar
  22. 22.
    Xu Y, Xue M, Li JJ, Zhang LJ, Cui YC (2010) Reac Kinet Mech Cat 100:347Google Scholar
  23. 23.
    Gao C, Vo CD, Jin YZ, Li WW (2005) Macromolecules 38:8634CrossRefGoogle Scholar
  24. 24.
    Mi HY, Zhang XG (2007) Electrochem Commun 9:2859CrossRefGoogle Scholar
  25. 25.
    Neelgund GM, Oki A (2011) J Nanosci Nanotechnol 11:3621CrossRefGoogle Scholar
  26. 26.
    Sun DP, Yang JZ, Li J, Xu X, Yang X (2010) Appl Surf Sci 256:2241CrossRefGoogle Scholar
  27. 27.
    Selvakumar K, Zapf A, Beller M (2002) Org Lett 4:3031CrossRefGoogle Scholar
  28. 28.
    Prockl S, Kleist W, Gruber MA, Kohler K (2004) Angew Chem Int Ed 43:1917CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Key Lab for Special Functional MaterialsMinistry of Education, Henan UniversityKaifengPeople’s Republic of China

Personalised recommendations