Reaction Kinetics, Mechanisms and Catalysis

, Volume 108, Issue 1, pp 117–126 | Cite as

Characterization of Pt catalysts supported by three forms of TiO2 and their catalytic activities for hydrogenation

  • Huiqin An
  • Peng Hu
  • Xiaojing Hu
  • Weiling Zhao
  • Baolin Zhu
  • Shurong Wang
  • Shoumin Zhang
  • Weiping Huang


Three forms of TiO2, commercial TiO2 powder, hydrogen titanate nanotubes obtained by hydrothermal treatment, and the thermally stable TiO2 nanotubes prepared by treating hydrogen titanate nanotubes with a sol containing titanium, were used as supports, and Pt nanoparticles were deposited on the supports via the photodeposition method. The catalytic performances of as-prepared and calcined Pt/TiO2 catalysts for the hydrogenation reaction of cyclohexene were evaluated. The results showed that the effects of the support and calcination temperature on the catalytic performances of Pt/TiO2 catalysts were obvious and significant. The thermally stable nanotubular TiO2-supported Pt catalyst exhibited better catalytic performance than the other TiO2-supported Pt catalysts. In addition, it was discovered that the calcination can enhance the catalytic activity of Pt/TiO2 for hydrogenation greatly.


TiO2 nanotubes Pt Cyclohexene Hydrogenation Catalytic performance 



This work is supported by the National Natural Science Foundation of China (21071086), Asian Research Center at Nankai University, the Specialized Research Fund for the Doctoral Program of Higher Education (200800551036), and Fundamental Research Funds for the Central Universities (Nankai University 65010031).


  1. 1.
    Domínguez-Quintero O, Martínez S, Henríquez Y, D’Ornelas L, Krentzien H, Osuna J (2003) J Mol Catal A 197:185CrossRefGoogle Scholar
  2. 2.
    Alivisatos AP (1996) Science 271:933CrossRefGoogle Scholar
  3. 3.
    Henglein A (1989) Chem Rev 89:1861CrossRefGoogle Scholar
  4. 4.
    Mandal S, Roy D, Chaudhari RV, Sastry M (2004) Chem Mater 16:3714CrossRefGoogle Scholar
  5. 5.
    Santori GF, Casella ML, Ferretti OA (2002) J Mol Catal A 186:223CrossRefGoogle Scholar
  6. 6.
    Aboul-Gheit AK, Aboul-Fotouh SM, Aboul-Gheit NAK (2005) Appl Catal A 283:157CrossRefGoogle Scholar
  7. 7.
    Manner WL, Girolami GS, Nuzzo RG (1998) J Phys Chem B 102:10295CrossRefGoogle Scholar
  8. 8.
    Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA (2007) Nano Lett 7:3097CrossRefGoogle Scholar
  9. 9.
    Chen P, Lu JQ, Xie GQ, Zhu L, Luo MF Reac Kinet Mech Cat. doi: 10.1007/s11144-012-0435-3
  10. 10.
    Pattamakomsan K, Aires FJCS, Suriye K, Panpranot J (2011) Reac Kinet Mech Cat 103:405CrossRefGoogle Scholar
  11. 11.
    Sikhwivhilu LM, Coville NJ, Naresh D, Chary KVR, Vishwanathan V (2007) Appl Catal A 324:52CrossRefGoogle Scholar
  12. 12.
    Claus P, Berndt H, Mohr C, Radnik J, Sin EJ, Keane MA (2000) J Catal 192:88CrossRefGoogle Scholar
  13. 13.
    Dodgson I, Griffin K, Barberis G, Pignataro F, Tauszik G (1989) Chem Ind 24:830Google Scholar
  14. 14.
    VanPeppen JF, Fischer WB, Chan CH (1980) In: Augustine RL (ed) Catalysis in organic reactions. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Galvagno S, Donato A, Neri G, Pietropaolo R (1991) J Chem Technol Biotechnol 51:145CrossRefGoogle Scholar
  16. 16.
    Pina G, Louis C, Keane MA (2003) Phys Chem Chem Phys 5:1924CrossRefGoogle Scholar
  17. 17.
    Zhu BL, Li KR, Feng YF, Zhang SM, Wu SH, Huang WP (2007) Catal Lett 118:55CrossRefGoogle Scholar
  18. 18.
    Shyamal KD, Srikarrao D, Aninda JB (2010) J Mater Chem 20:1600CrossRefGoogle Scholar
  19. 19.
    Chen HW, Ku Y, Kuo YL (2007) Water Res 41:2069CrossRefGoogle Scholar
  20. 20.
    Li FB, Li XZ (2002) Chemosphere 48:1103CrossRefGoogle Scholar
  21. 21.
    Sanchez E, Lopez T (1995) Mater Lett 25:271CrossRefGoogle Scholar
  22. 22.
    Vorontsov AV, Savinov EN, Jin ZS (1999) J Photochem Photobiol, A 125:113CrossRefGoogle Scholar
  23. 23.
    Zheng S, Gao L (2002) Mater Chem Phys 78:512CrossRefGoogle Scholar
  24. 24.
    Shrestha NK, Yang M, Nah YC, Paramasivam I, Schmuki P (2010) Electrochem Commun 12:254CrossRefGoogle Scholar
  25. 25.
    Xu JC, Lu M, Guo XY, Li HL (2005) J Mol Catal A 226:123CrossRefGoogle Scholar
  26. 26.
    Zhu BL, Guo Q, Huang XL, Wang SR, Zhang SM, Wu SH, Huang WP (2006) J Mol Catal A 249:211CrossRefGoogle Scholar
  27. 27.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215CrossRefGoogle Scholar
  28. 28.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160CrossRefGoogle Scholar
  29. 29.
    Zhu BL (2006) Ph.D. dissertation of Nankai University, TianjinGoogle Scholar
  30. 30.
    An HQ, Zhu BL, Li JX, Zhou J, Wang SR, Zhang SM, Wu SH, Huang WP (2008) J Phys Chem C 112:18772Google Scholar
  31. 31.
    An HQ, Zhou J, Li JX, Zhu BL, Wang SR, Zhang SM, Wu SH, Huang WP (2009) Catal Commun 11:75CrossRefGoogle Scholar
  32. 32.
    Wang J, Li RH, Zhang ZH, Zhang XD, Sun W, Wang H, Xu R, Xing ZQ (2007) J Chem Technol Biotechnol 82:588CrossRefGoogle Scholar
  33. 33.
    Zhang M, Jin ZS, Zhang JW, Guo XY, Yang JJ, Li W, Wang XD, Zhang ZJ (2004) J Mol Catal A 217:203CrossRefGoogle Scholar
  34. 34.
    Li Q, Wang K, Zhang S, Zhang M, Yang J, Jin Z (2006) J Mol Catal A 258:83CrossRefGoogle Scholar
  35. 35.
    Zhang M, Jin Z, Zhang Z, Dang H (2005) Appl Surf Sci 250:29CrossRefGoogle Scholar
  36. 36.
    Lylykangas MS, Rautanen PA, Krause AOI (2004) Ind Eng Chem Res 43:1641CrossRefGoogle Scholar
  37. 37.
    Zhu BL, Li KR, Zhou J, Wang SR, Zhang SM, Wu SH, Huang WP (2008) Catal Commun 9:2323CrossRefGoogle Scholar
  38. 38.
    Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170CrossRefGoogle Scholar
  39. 39.
    Hadjiivanov KI, Klissurski DG (1996) Chem Soc Rev 25:61CrossRefGoogle Scholar
  40. 40.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175CrossRefGoogle Scholar
  41. 41.
    Li Y, Jang BWL (2010) Ind Eng Chem Res 49:8433CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Huiqin An
    • 1
    • 2
  • Peng Hu
    • 2
  • Xiaojing Hu
    • 2
  • Weiling Zhao
    • 2
  • Baolin Zhu
    • 2
  • Shurong Wang
    • 2
  • Shoumin Zhang
    • 2
  • Weiping Huang
    • 2
  1. 1.School of Environmental and Chemical EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of ChemistryNankai UniversityTianjinChina

Personalised recommendations