Skip to main content
Log in

Thermogravimetric analysis of the catalytic effect of metallic compounds on the combustion behaviors of coals

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Effects of KNO3, CeO2, Fe2O3, their mixture and their thermally treated mixture on the combustion reactivity of two coals, bituminous coal (BC) and high ash coal (HAC), were investigated by thermogravimetric analysis. The ignition performance, burnout performance and exothermic behavior were used to evaluate the catalytic effect. Moreover, the kinetic parameters were determined using the Coats–Redfern method. The results indicated that the activity sequence of the catalysts on BC relative to the ignition performance can be described as follows: the thermally treated mixture > the mixture > KNO3 > Fe2O3 > CeO2, and the activity sequence relative to the burnout performance is the same. The activity sequence of the catalysts on HAC relative to the ignition performance can be described as follows: the thermally treated mixture > the mixture > Fe2O> CeO2 > KNO3, and the activity sequence relative to the burnout performance is the same. The exothermic heats of catalyst-incorporating samples increased and the activation energies of the samples decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang LM, Tan ZC, Wang SD et al (1997) Combustion calorimetric and thermogravimetric studies of graphite and coals doped with a coal-burning additive. Thermochim Acta 299:13–17

    Article  CAS  Google Scholar 

  2. Wu ZH, Xu L, Wang ZZ et al (1998) Catalytic effects on the ignition temperature of coal. Fuel 77(8):891–893

    Article  CAS  Google Scholar 

  3. Kök MV, Ozbas KE, Hicyilmaz C (2002) The effect of lime addition on the combustion properties and sulfur contents of three different coals. Energy Sources 24(7):643–652

    Article  Google Scholar 

  4. Hedden K, Wilhelm A (1980) Catalytic effects of inorganic substances on reactivity and ignition temperature of solid fuels. Ger Chem Eng 3(2):142–147

    Google Scholar 

  5. Altun NE, Hicyilmaz C, Kok MV (2001) Effect of different binders on the combustion properties of lignite, TG/DTG study, Part I. Effect on thermal properties. J Therm Anal Calorim 65(2):787–795

    Article  CAS  Google Scholar 

  6. Yaman S, Kucukbayrak S (1997) Effect of oxydesulphurization on the combustion characteristics of coal. Thermochim Acta 293(2):109–115

    Article  CAS  Google Scholar 

  7. Matsuzawa Y, Mae K, Hasegawa I (2007) Characterization of carbonized municipal waste as substitute for coal fuel. Fuel 86(1–2):264–272

    Article  CAS  Google Scholar 

  8. Pranda P, Prandová K, Hlavacek V (1999) Combustion of fly-ash carbon Part I. TG/DTA study of ignition temperature. Fuel Process Technol 61:211–221

    Article  CAS  Google Scholar 

  9. Rustamov VR, Abdullayev KM, Samedov EA (1998) Biomass conversion to liquid fuel by two-stage thermochemical cycle. Energy Convers Manag 39(9):869–875

    Article  CAS  Google Scholar 

  10. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci 62(6):219–270

    Article  CAS  Google Scholar 

  11. Li XG, Ma BG, Xu L (2007) Catalytic effect of metallic oxides on combustion behavior of high ash coal. Energy Fuels 21(5):2669–2672

    Article  CAS  Google Scholar 

  12. Devener BV, Anderson SL (2006) Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy Fuels 20(5):1886–1894

    Article  Google Scholar 

  13. Issa M, Petit C, Brillard A (2008) Oxidation of carbon by CeO2: effect of the contact between carbon and catalyst particles. Fuel 87(6):740–750

    Article  CAS  Google Scholar 

  14. Murakami K, Shirato H, Ozaki J et al (1996) Effects of metal ions on the thermal decomposition of brown coal. Fuel Process Technol 46(3):183–194

    Article  CAS  Google Scholar 

  15. Gong XZ, Guo ZC, Wang Z (2010) Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3. Combust Flame 157(2):351–356

    Article  CAS  Google Scholar 

  16. Xie KC (2002) Coal structure and its reactivity. Science Press, Beijing, pp 520–530

    Google Scholar 

  17. Manquais KL, Snape CE, Mcrobbie I et al (2011) Evaluating the combustion reactivity of drop tube furnace and thermogravimetric analysis coal chars with a selection of metal additives. Fuel Energy 25(3):981–989

    Article  Google Scholar 

  18. Ma BG, Li XG, Xu L et al (2006) Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochim Acta 445:19–22

    Article  CAS  Google Scholar 

  19. Xu DY, Huang M, Wang YB et al (2006) Effect of FeCl3 on ignition point of coals. China Univ Min Technol 16(2):216–219

    CAS  Google Scholar 

  20. Li XG, Ma BG et al (2006) Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441(1):79–83

    Article  CAS  Google Scholar 

  21. Kök MV (2002) An investigation into the thermal behavior of coals. Energy Sources 24(10):899–906

    Article  Google Scholar 

  22. Xie JL, He F (1998) Catalyzed combustion study of anthracite in cement kiln. J Chin Ceram Soc 26(6):792–795

    CAS  Google Scholar 

  23. Santos JCO, Oliveria AD, Silva CC et al (2007) Kinetic and activation thermodynamic parameters on thermal decomposition of synthetic lubricant oils. J Therm Anal Calorim 87(3):823–829

    Article  CAS  Google Scholar 

  24. Dantas MB, Fernandes VJ Jr, Santos NA et al (2007) Thermal and kinetic study of corn biodiesel obtained by the methanol and ethanol routes. J Therm Anal Calorim 87(3):835–839

    Article  CAS  Google Scholar 

  25. Kök MV, Pokol G, Keskin C et al (2004) Combustion characteristics of lignite and oil shale samples by thermal analysis techniques. J Therm Anal Calorim 76(1):247–254

    Article  Google Scholar 

  26. Kök MV (2005) Temperature-controlled combustion and kinetics of different rank coal samples. J Therm Anal Calorim 79(1):175–180

    Article  Google Scholar 

  27. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric date. Nature 201:68–69

    Article  CAS  Google Scholar 

  28. Li L, Tan ZC, Meng SH et al (2000) Kinetic study of the accelerating effect of coal-additives on the combustion of graphite. J Therm Anal Calorim 62(3):681–685

    Article  CAS  Google Scholar 

  29. Li CS, Suzuki K (2009) Kinetics of perovskite catalyzed biomass tar combustion studied by thermogravimetry and differential thermal analysis, energy fuels 23(5): 2364–2369

  30. Shen BX, Qin L (2005) Study on MSW catalytic combustion by TGA. J Fuel Chem Technol 33(2):189–193

    CAS  Google Scholar 

  31. Makkee M, Jelles SJ, Moulijn JA (2000) Catalysis by ceria and related materials. In: Trovarelli A (ed) Catalytic science series. Imperial college press, London, p 391

  32. Setiabudi A, Chen JL, Mul G et al (2004) CeO2 catalysed soot oxidation: the role of active oxygen to accelerate the oxidation conversion. Appl Catal B 51:9–19

    Article  CAS  Google Scholar 

  33. Jiménez R, García X, Gordon AL (2012) About the active phases of KNO3/MgO for catalytic soot combustion. Reac Kinet Mech Cat 99:281–287

    Google Scholar 

  34. Cuesta A, Amelia MA, TascÓn MD (1993) Correlation between Arrhenius kinetic parameters in the reaction of different carbon materials with oxygen. Energy Fuels 7:1141–1145

    Article  CAS  Google Scholar 

  35. Essenhigh RH, Misra MK (1990) Autocorrelations of kinetic parameters in coal and char reactions. Energy Fuels 4:171–177

    Article  CAS  Google Scholar 

  36. Li SF, Cheng YL (1995) Catalytic gasification of gas–coal char in CO2. Fuel 74(3):456–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Production and Research Prospective Joint Research Project (BY2009153) and the National Nature Science Foundation of China (50873026) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, K., Zhou, YM., Yao, QZ. et al. Thermogravimetric analysis of the catalytic effect of metallic compounds on the combustion behaviors of coals. Reac Kinet Mech Cat 106, 369–377 (2012). https://doi.org/10.1007/s11144-012-0444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0444-2

Keywords

Navigation