Reaction Kinetics, Mechanisms and Catalysis

, Volume 106, Issue 2, pp 457–473 | Cite as

Kinetics of the Heck reaction in biphasic organic-ethylene glycol medium



PdCl2(bipy) was found to be an efficient and stable catalyst in biphasic medium (organic-glycol) for the Heck reaction. The kinetics of the Heck coupling of styrene with iodobenzene using the same catalyst was studied in a biphasic medium in a temperature range of 393–413 K. The rate was found to have a first order dependence tending to a fractional order, on the iodobenzene as well as catalyst concentration. The rate was found to have a complex dependence on the styrene concentration and passes through a maximum, showing typical substrate inhibition kinetics. The rate had a first order dependence on the base (morpholine) concentration. The trends observed for the influence of the different parameters on the activity of the catalyst are in agreement with the established mechanism for Heck reaction. An empirical rate model has been proposed to fit the observed rate data. The activation energy was found to be 72.91 kJ/mol. This is the first time that kinetic modeling of Heck reaction in a biphasic medium (organic-glycol) has been attempted.


Heck reaction Biphasic catalysis PdCl2(bipy) complex Kinetics 



SVJ thanks University Grant Commission of India for PhD fellowship.


  1. 1.
    Negishi E (ed) (2002) Handbook of organopalladium chemistry for organic synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Beletskaya IP, Cheprakov AV (2000) Chem Rev 100(8):3009CrossRefGoogle Scholar
  3. 3.
    Nicolaou KC, Sorensen EJ (eds) (1996) Classics in total synthesis. Wiley-Vch Verlag GmbH & Co KGaA, WeinheimGoogle Scholar
  4. 4.
    de Vries JG (2001) Can J Chem 79:1086–1092CrossRefGoogle Scholar
  5. 5.
    Parshall GW (1980) Homogeneous catalysis. Wiley Interscience, New YorkGoogle Scholar
  6. 6.
    Kuntz EG (1987) ChemTech 17:570–575Google Scholar
  7. 7.
    Tokitoh Y, Yoshimura N, Higashi T, Hino K, Murasawa M (1991) EP 436:226Google Scholar
  8. 8.
    Mercier G, Chabardes P (1994) Pure Appl Chem 66:1509CrossRefGoogle Scholar
  9. 9.
    Chauvin Y, Einloft S, Olivier H (1995) Ind Eng Chem Res 34:1149CrossRefGoogle Scholar
  10. 10.
    Chauvin Y, Gilbert B, Guibard I (1990) J Chem Soc Chem Commun 23:1715CrossRefGoogle Scholar
  11. 11.
    Jagtap SV, Deshpande RM (2008) Catal Today 131(1–4):353CrossRefGoogle Scholar
  12. 12.
    Bhanage BM, Arai M (2001) Catal Rev 43(3):315CrossRefGoogle Scholar
  13. 13.
    Molnar A (2011) Chem Rev 111:2251CrossRefGoogle Scholar
  14. 14.
    Zhao F, Bhanage BM, Shirai M, Arai MJ (1999) Mol Catal A Chem 142(3):383–388CrossRefGoogle Scholar
  15. 15.
    Herrmann WA, Brossmer C, Ofele K, Beller M, Fischer H (1995) J Mol Catal A 103:133CrossRefGoogle Scholar
  16. 16.
    Benhaddou R, Czernecki S, Ville G, Zegar A (1988) Organometallics 7(12):2435–2439CrossRefGoogle Scholar
  17. 17.
    Amatore C, Jutand A (1999) J Organomet Chem 576:254CrossRefGoogle Scholar
  18. 18.
    Schmidt AF, Smirnov VV, Al-Halaiga A (2007) Kinet Catal 48(3):390–397 (English)CrossRefGoogle Scholar
  19. 19.
    Van Strijdonck GFP, Boele MDK, Kamer PCJ, de Vries JG, van Leeuwen PWNM (1999) Eur. J Inorg Chem 7:1073–1076Google Scholar
  20. 20.
    Zhao F-G, Bhanage BM, Shirai M, Arai M (1999) Stud Surf Sci Catal 122:427–430CrossRefGoogle Scholar
  21. 21.
    Rosner T, Le Bars J, Pfaltz A, Blackmond DG (2001) J Am Chem Soc 123(9):1848CrossRefGoogle Scholar
  22. 22.
    Rosner T, Pfaltz A, Blackmond DG (2001) J Am Chem Soc 123(19):4621CrossRefGoogle Scholar
  23. 23.
    Amatore C, Carre E, Jutand A, Medjour Y (2002) Organometallics 21(21):4540CrossRefGoogle Scholar
  24. 24.
    Consorti CS, Flores R, Fabricio, Dupont J (2005) J Am Chem Soc 127(34):12054CrossRefGoogle Scholar
  25. 25.
    Nilsson P, Wendt OF (2005) J Organomet Chem 690(18):4197CrossRefGoogle Scholar
  26. 26.
    Fujita S, Yoshida T, Bhanage BM, Arai M (2002) J Mol Catal A Chem 188:37CrossRefGoogle Scholar
  27. 27.
    Sud A, Deshpande RM, Chaudhari RV (2007) J Mol Catal A Chem 270:144CrossRefGoogle Scholar
  28. 28.
    Bhanage BM, Zhao FG, Shirai M, Arai M (1998) Tetrahedron Lett 39:9509–9512CrossRefGoogle Scholar
  29. 29.
    Beller M, Krauter JGE, Zapf A (1997) Angew Chem Int Ed Eng 36(7):772–774CrossRefGoogle Scholar
  30. 30.
    Thorpe T, Brown SM, Crosby J, Fitzjohn S, Muxworthy JP, Williams JMJ (2000) Tetrahedron Lett 41:4503CrossRefGoogle Scholar
  31. 31.
    McCormick BJ, Jaynes EN Jr, Kaplan RI (1971) Inorg Synth 13:216CrossRefGoogle Scholar
  32. 32.
    Cabri W, Candiani I (1995) Acc Chem Res 28(1):2–7CrossRefGoogle Scholar
  33. 33.
    Crisp GT (1998) Chem Soc Rev 27:427CrossRefGoogle Scholar
  34. 34.
    Marquardt DW (1963) J Soc Ind Appl Math 11(2):431CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Sangeeta Vijay Jagtap
    • 1
    • 2
  • Raj Madhukar Deshpande
    • 3
  1. 1.Chemical Engineering DivisionNational Chemical LaboratoryPuneIndia
  2. 2.B. G. CollegeSangvi, PuneIndia
  3. 3.Dow Chemicals International Pvt. LtdYerawda, PuneIndia

Personalised recommendations