Reaction Kinetics, Mechanisms and Catalysis

, Volume 106, Issue 2, pp 355–367 | Cite as

Effect of pre-compression on the kinetics of thermal decomposition of pure and doped sodium oxalate under isothermal conditions

  • M. Jose John
  • K. Muraleedharan
  • V. M. Abdul Mujeeb
  • M. P. Kannan
  • T. Ganga Devi


Pure and doped samples of sodium oxalate (Na2C2O4) were subjected to pre-compression and their thermal decomposition kinetics was studied at five different temperatures in the range 783–803 K under isothermal conditions by thermogravimetry. The pre-compressed samples decomposed in two stages governed by different rate laws; the Prout–Tompkins model best describes the acceleratory stage of the decomposition while the decay region is best fitted with the contracting cylinder model as in the case of uncompressed sodium oxalate samples. The rate constants k 1 and k 2 of the acceleratory and deceleratory stages of the thermal decomposition were dramatically decreased on pre-compression. However, the activation energies, evaluated by model fitting kinetic method, E 1 and E 2 for the respective stages of decomposition remained unaltered by pre-compression. The results favor ionic diffusion mechanism proposed earlier on the basis of doping studies.


Contracting cylinder equation Diffusion controlled mechanism Isothermal thermogravimetry Pre-compression Prout–Tompkins equation Sodium oxalate 

Mathematical Subject Classification


JEL Classification


Supplementary material

11144_2012_436_MOESM1_ESM.doc (384 kb)
Supplementary material 1 (DOC 384 kb)


  1. 1.
    Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Madhusudanan PM, Krishnan K, Ninan KN. In: Thermal analysis. vol 2. Proceedings of the seventh international conference on thermal analysis, 1982, p. 226Google Scholar
  3. 3.
    Urbanovici E, Segal E (1986) Thermochim Acta 107:353CrossRefGoogle Scholar
  4. 4.
    Moll J, Kerug D, Lept D. In: Thermal analysis, vol 1. Proceedings of the sixth international conference on thermal analysis, 1980, p 57Google Scholar
  5. 5.
    Urbanovici E, Segal E (1986) Thermochim Acta 107:359CrossRefGoogle Scholar
  6. 6.
    Urbanovici E, Segal E (1986) Thermochim Acta 98:385CrossRefGoogle Scholar
  7. 7.
    Krishnan K, Ninan KN, Madhusudanan PM (1986) Thermochim Acta 101:365CrossRefGoogle Scholar
  8. 8.
    Freeman ES, Carroll B (1958) J Phys Chem 62:394CrossRefGoogle Scholar
  9. 9.
    Simons EL, Newkirk AE (1964) Talanta 11:549CrossRefGoogle Scholar
  10. 10.
    L’vov BV (2000) Thermochim Acta 364:99CrossRefGoogle Scholar
  11. 11.
    Gopalakrishna Murhty HS, Subba Rao M, Narayanan Kutty TR (1975) J Inorg Nucl Chem 7:1875CrossRefGoogle Scholar
  12. 12.
    Patra BS, Otta S, Bhattamisra SD (2006) Thermochim Acta 441:84CrossRefGoogle Scholar
  13. 13.
    Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) J Anal Appl Pyrol 81:253CrossRefGoogle Scholar
  14. 14.
    Liqing L, Donghua C (2004) J Therm Anal Calorim 78:283CrossRefGoogle Scholar
  15. 15.
    Zhang JJ, Ren N, Bai JH (2006) Chin J Chem 24:360CrossRefGoogle Scholar
  16. 16.
    Duval C (1963) Inorganic thermogravimetric analysis, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Galwey AK, Brown ME (2007) J Therm Anal Caoriml 90:9CrossRefGoogle Scholar
  18. 18.
    Majumdar S, Sharma IG, Bidaye AC, Suri AK (2008) Thermochim Acta 473:45CrossRefGoogle Scholar
  19. 19.
    Donkova B, Mehandjiev D (2004) Thermochim Acta 421:141CrossRefGoogle Scholar
  20. 20.
    Al-Newaiser FA, Al-Thabaiti SA, Al-Youbi AO, Obaid AY, Gabal MA (2007) Chem Pap 61:370CrossRefGoogle Scholar
  21. 21.
    Górski A, Kraśnicka AD (1987) J Therm Anal Calorim 32:1229CrossRefGoogle Scholar
  22. 22.
    Freeberg FE, Hartman KO, Hisatsune IC, Schempf JM (1967) J Phys Chem 71:397CrossRefGoogle Scholar
  23. 23.
    Reddy MVVS, Lingam KV, Gundu Rao TK (1981) J. Mol Phys 42:1267CrossRefGoogle Scholar
  24. 24.
    Leiga AG (1966) J Phys Chem 70:3260CrossRefGoogle Scholar
  25. 25.
    Sciora C, Mutin JC (1981) J Therm Anal Calorim 20:125CrossRefGoogle Scholar
  26. 26.
    Sciora C, Mutin JC (1980) J Therm Anal Calorim 19:365CrossRefGoogle Scholar
  27. 27.
    Rossberg M, Khairetdinov EF, Linke E, Boldyrev VV (1982) J Solid State Chem 41:266CrossRefGoogle Scholar
  28. 28.
    Welch AJE (1955) In: Garner WE (ed) Chemistry of the solid state, chapter 12. Academic Press, New YorkGoogle Scholar
  29. 29.
    Dollimore D (1987) Thermochim Acta 117:331CrossRefGoogle Scholar
  30. 30.
    Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N (2011) J Therm Anal Calorim. doi: 10.1007/s10973-011-1675-6
  31. 31.
    Jeffrey GA, Parry GS (1954) J Am Chem Soc 76:5283CrossRefGoogle Scholar
  32. 32.
    Zhabrova GM, Suzdalev IP, Gol’danskii VI, Shkarin AV, Makarov EF (1967) Theor Exp Chem 3:278CrossRefGoogle Scholar
  33. 33.
    Kannan MP, Muraleedharan K (1990) Thermochim Acta 158:259CrossRefGoogle Scholar
  34. 34.
    Muraleedharan K, Kannan MP (2000) Thermochim Acta 359:161CrossRefGoogle Scholar
  35. 35.
    Vyazovkin S, Wight CA (1997) Annu Rev Phys Chem 48:125CrossRefGoogle Scholar
  36. 36.
    Rózycki C, Maciejewski M (1985) Thermochim Acta 96:91CrossRefGoogle Scholar
  37. 37.
    Levie R (1986) J Chem Educ 63:10CrossRefGoogle Scholar
  38. 38.
    Sands DE (1974) J Chem Educ 51:473CrossRefGoogle Scholar
  39. 39.
    Wentworth WE (1965) J Chem Educ 42:96CrossRefGoogle Scholar
  40. 40.
    Criado JM, Morales J (1977) Thermochim Acta 19:305CrossRefGoogle Scholar
  41. 41.
    Smieszek Z, Kolenda ZS, Norwisz J, Hajduk N (1982) J Therm Anal Calorim 25:377CrossRefGoogle Scholar
  42. 42.
    Abdul Mujeeb VM, Muraleedharan K, Kannan MP, Ganga Devi T (2011) Thermochm Acta 525:150CrossRefGoogle Scholar
  43. 43.
    Brown ME (2005) J Therm Anal Calorim 82:665CrossRefGoogle Scholar
  44. 44.
    Jose John M, Muraleedharan K, Kannan MP, Ganga Devi T (2011) J Serb Chem Soc (Submitted)Google Scholar
  45. 45.
    Prout EG, Tompkins FC (1944) Trans Faraday Soc 40:488CrossRefGoogle Scholar
  46. 46.
    Herley PJ, Jacobs PWM, Levy PW J (1971) Chem Soc A:434Google Scholar
  47. 47.
    Herley PJ, Jacobs PWM, Levy PW (1970) Proc Roy Soc A 318:197CrossRefGoogle Scholar
  48. 48.
    Pai Verneker VR, Radhakrishnan Nair MN (1975) Combust Flame 25:301CrossRefGoogle Scholar
  49. 49.
    Pai Verneker VR, Kishore K, Kannan MP (1977) J Appl Chem Biotechnol 27:309CrossRefGoogle Scholar
  50. 50.
    Muraleedharan K, Abdul Mujeeb VM, Aneesh MH, Ganga Devi T, Kannan MP (2010) Thermochim Acta 510:160CrossRefGoogle Scholar
  51. 51.
    Abdul Mujeeb VM, Aneesh MH, Muraleedharan K, Devi TG, Kannan MP (2011) J Thermal Anal Calorim 104:991CrossRefGoogle Scholar
  52. 52.
    Budnikov PP, Ginstling AM (1968) Principles of solid state chemistry, reactions in solids. Maclaren and sons, London, pp 250–251. (Translated from Russian and Edited by Kenneth Shaw)Google Scholar
  53. 53.
    Hirth JP (ed) (2008) Dislocations in solids. Elseviar, AmsterdamGoogle Scholar
  54. 54.
    Kannan MP, Ganga Devi T (1997) Thermochim Acta 292:105CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • M. Jose John
    • 1
  • K. Muraleedharan
    • 1
  • V. M. Abdul Mujeeb
    • 1
  • M. P. Kannan
    • 1
  • T. Ganga Devi
    • 1
  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia

Personalised recommendations