Skip to main content
Log in

Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The highly efficient and visible light (λ ≥ 420 nm) responsive composite photocatalyst WO3/Bi3O4Cl was prepared by the simple incipient wetness method. The heterojunction structure WO3/Bi3O4Cl demonstrated notably higher photocatalytic activity than the individual components WO3 or Bi3O4Cl for the complete mineralization of gaseous 2-propanol, aqueous 1,4-dichlorobenzene and several other organic compounds in aqueous phase under visible-light irradiation. The photocatalytic efficiency of the composite was optimized at 7 mol% WO3/Bi3O4Cl and annealed at 700 °C for 1 h. In comparison with Degussa P25, the photocatalytic activity with optimized composition was 5.9 times in evolving CO2 and 8.8 times in decomposing IP in gas phase. While in aqueous phase, its photocatalytic efficiency was 19–22 times and 9–10 times, respectively, compared to that of Degussa P25 and Bi2O3. Remarkably, its efficiency was estimated to be 1.6 times that of typical N-doped TiO2 in the evolution of CO2. The obviously enhanced photocatalytic performance of WO3/Bi3O4Cl composite has been discussed on the basis of the relative energy band positions of the Bi3O4Cl and WO3 semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  4. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243–2245

    Article  CAS  Google Scholar 

  5. Janus M, Nejman EK, Morawski AW (2011) React Kinet Mech Catal 103:279–288

    Article  CAS  Google Scholar 

  6. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  CAS  Google Scholar 

  7. Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV (2006) J Photochem Photobiol A Chem 183:218–224

    Article  CAS  Google Scholar 

  8. Bojinova A, Dushkin C (2011) React Kinet Mech Catal 103:239–250

    Article  CAS  Google Scholar 

  9. Kim YJ, Gao B, Han SY, Jung MH, Chakraborty AK, Ko T, Lee C, Lee WI (2009) J Phys Chem C 113:19179–19184

    Article  CAS  Google Scholar 

  10. Gao B, Kim YJ, Chakraborty AK, Lee WI (2008) Appl Catal B Environ 83:202–207

    Article  CAS  Google Scholar 

  11. Rawal SB, Chakraborty AK, Lee WI (2009) Bull Korean Chem Soc 30:2613–2616

    Article  CAS  Google Scholar 

  12. Chakraborty AK, Kebede MA (2012) J Clust Sci. doi:10.1007/s10876-011-0425-z

  13. Kudo A, Omori K, Kato H (1999) J Am Chem Soc 121:11459–11467

    Article  CAS  Google Scholar 

  14. Amano F, Yamakata A, Nogami K, Osawa M, Ohtani B (2008) J Am Chem Soc 130:17650–17651

    Article  CAS  Google Scholar 

  15. Tang J, Zou Z, Ye J (2004) Angew Chem Int Ed 43:4463–4466

    Article  CAS  Google Scholar 

  16. Zhang J, Shi F, Lin J, Chen D, Gao J, Huang Z, Ding X, Tang C (2008) Chem Mater 20:2937–2941

    Article  CAS  Google Scholar 

  17. Yu C, Fan C, Meng X, Yang K, Cao F, Li X (2011) React Kinet Mech Catal 103:141–151

    Article  CAS  Google Scholar 

  18. Lin X, Huang T, Huang F, Wang W, Shi J (2006) J Phys Chem B 110:24629–24634

    Article  CAS  Google Scholar 

  19. Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H (2010) Appl Catal B Environ 94:150–157

    Article  CAS  Google Scholar 

  20. Sclafani A, Palmisano L, Marcí G, Venezia AM (1998) Sol Energy Mater Sol Cells 51:203–219

    Article  CAS  Google Scholar 

  21. Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) J Phys Chem C 111:7574–7577

    Article  CAS  Google Scholar 

  22. Keller V, Bernhardt P, Garin F (2003) J Catal 215:129–138

    Article  CAS  Google Scholar 

  23. Chai SY, Kim YJ, Lee WI (2006) J Electroceram 17:909–912

    Article  CAS  Google Scholar 

  24. Chatchai P, Murakami Y, Kishioka S, Nosaka AY, Nosaka Y (2009) Electrochim Acta 54:1147–1152

    Article  CAS  Google Scholar 

  25. Huang T, Lin X, Xing J, Wang W, Shan Z, Huang F (2007) Mater Sci Eng B 141:49–54

    Article  CAS  Google Scholar 

  26. Gao B, Chakraborty AK, Yang JM, Lee WI (2010) Bull Korean Chem Soc 31:1941–1944

    Article  CAS  Google Scholar 

  27. Hameed A, Montini T, Gombac V, Fornasiero P (2008) J Am Chem Soc 130:9658–9659

    Article  CAS  Google Scholar 

  28. Morikawa T, Irokawa Y, Ohwaki T (2006) Appl Catal A 314:123–127

    Article  CAS  Google Scholar 

  29. Kwon YT, Song KY, Lee WI, Choi GJ, Do YR (2000) J Catal 191:192–199

    Article  CAS  Google Scholar 

  30. Chakraborty AK, Rawal SB, Han SY, Chai SY, Lee WI (2011) Appl Catal A Gen 407:217–223

    Article  CAS  Google Scholar 

  31. Pan JH, Lee WI (2006) Chem Mater 18:847–853

    Article  CAS  Google Scholar 

  32. Xu Y, Schoonen MAA (2000) Am Miner 85:543–556

    CAS  Google Scholar 

  33. Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) J Catal 262:144–149

    Article  CAS  Google Scholar 

  34. Ohko Y, Hashimoto K, Fujishima A (1997) J Phys Chem A 101:8057–8062

    Article  CAS  Google Scholar 

  35. Kim YI, Atherton SJ, Brigham ES, Mallouk TE (1993) J Phys Chem 97:11802–11810

    Article  CAS  Google Scholar 

  36. Butler MA, Ginley DS (1978) J Electrochem Soc 125:228–232

    Article  CAS  Google Scholar 

  37. Cheng H, Huang B, Dai Y, Qin X, Zhang X (2010) Langmuir 26:6618–6624

    Article  CAS  Google Scholar 

  38. Xiao Q, Zhang J, Xiao C, Tan X (2008) Catal Commun 9:1247–1253

    Article  CAS  Google Scholar 

  39. Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y (2006) J Phys Chem B110:20211–20216

    Google Scholar 

  40. Ke D, Liu H, Peng T, Liu X, Dai K (2008) Mater Lett 62:447–450

    Article  CAS  Google Scholar 

  41. Li D, Haneda H, Ohashi N, Hishita S, Yoshikawa Y (2004) Catal Today 93–95:895–901

    Article  Google Scholar 

  42. Tang JW, Zou ZG, Ye JH (2003) J Phys Chem B 107:14265–14269

    Article  CAS  Google Scholar 

  43. Gao B, Ma Y, Cao Y, Yang W, Yao J (2006) J Phys Chem B 110:14391–14397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia, Bangladesh and Evonik Degussa GmbH for Degussa P25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A.K., Kebede, M.A. Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation. Reac Kinet Mech Cat 106, 83–98 (2012). https://doi.org/10.1007/s11144-012-0423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0423-7

Keywords

Navigation