Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation

  • Ashok Kumar Chakraborty
  • Mesfin Abayneh Kebede


The highly efficient and visible light (λ ≥ 420 nm) responsive composite photocatalyst WO3/Bi3O4Cl was prepared by the simple incipient wetness method. The heterojunction structure WO3/Bi3O4Cl demonstrated notably higher photocatalytic activity than the individual components WO3 or Bi3O4Cl for the complete mineralization of gaseous 2-propanol, aqueous 1,4-dichlorobenzene and several other organic compounds in aqueous phase under visible-light irradiation. The photocatalytic efficiency of the composite was optimized at 7 mol% WO3/Bi3O4Cl and annealed at 700 °C for 1 h. In comparison with Degussa P25, the photocatalytic activity with optimized composition was 5.9 times in evolving CO2 and 8.8 times in decomposing IP in gas phase. While in aqueous phase, its photocatalytic efficiency was 19–22 times and 9–10 times, respectively, compared to that of Degussa P25 and Bi2O3. Remarkably, its efficiency was estimated to be 1.6 times that of typical N-doped TiO2 in the evolution of CO2. The obviously enhanced photocatalytic performance of WO3/Bi3O4Cl composite has been discussed on the basis of the relative energy band positions of the Bi3O4Cl and WO3 semiconductors.


Nanocomposite Photocatalyst Visible light Organic pollutants CO2 Evolution 



The authors gratefully acknowledge the financial support of the Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia, Bangladesh and Evonik Degussa GmbH for Degussa P25.


  1. 1.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96CrossRefGoogle Scholar
  2. 2.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C Photochem Rev 1:1–21CrossRefGoogle Scholar
  4. 4.
    Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243–2245CrossRefGoogle Scholar
  5. 5.
    Janus M, Nejman EK, Morawski AW (2011) React Kinet Mech Catal 103:279–288CrossRefGoogle Scholar
  6. 6.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271CrossRefGoogle Scholar
  7. 7.
    Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV (2006) J Photochem Photobiol A Chem 183:218–224CrossRefGoogle Scholar
  8. 8.
    Bojinova A, Dushkin C (2011) React Kinet Mech Catal 103:239–250CrossRefGoogle Scholar
  9. 9.
    Kim YJ, Gao B, Han SY, Jung MH, Chakraborty AK, Ko T, Lee C, Lee WI (2009) J Phys Chem C 113:19179–19184CrossRefGoogle Scholar
  10. 10.
    Gao B, Kim YJ, Chakraborty AK, Lee WI (2008) Appl Catal B Environ 83:202–207CrossRefGoogle Scholar
  11. 11.
    Rawal SB, Chakraborty AK, Lee WI (2009) Bull Korean Chem Soc 30:2613–2616CrossRefGoogle Scholar
  12. 12.
    Chakraborty AK, Kebede MA (2012) J Clust Sci. doi: 10.1007/s10876-011-0425-z
  13. 13.
    Kudo A, Omori K, Kato H (1999) J Am Chem Soc 121:11459–11467CrossRefGoogle Scholar
  14. 14.
    Amano F, Yamakata A, Nogami K, Osawa M, Ohtani B (2008) J Am Chem Soc 130:17650–17651CrossRefGoogle Scholar
  15. 15.
    Tang J, Zou Z, Ye J (2004) Angew Chem Int Ed 43:4463–4466CrossRefGoogle Scholar
  16. 16.
    Zhang J, Shi F, Lin J, Chen D, Gao J, Huang Z, Ding X, Tang C (2008) Chem Mater 20:2937–2941CrossRefGoogle Scholar
  17. 17.
    Yu C, Fan C, Meng X, Yang K, Cao F, Li X (2011) React Kinet Mech Catal 103:141–151CrossRefGoogle Scholar
  18. 18.
    Lin X, Huang T, Huang F, Wang W, Shi J (2006) J Phys Chem B 110:24629–24634CrossRefGoogle Scholar
  19. 19.
    Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H (2010) Appl Catal B Environ 94:150–157CrossRefGoogle Scholar
  20. 20.
    Sclafani A, Palmisano L, Marcí G, Venezia AM (1998) Sol Energy Mater Sol Cells 51:203–219CrossRefGoogle Scholar
  21. 21.
    Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) J Phys Chem C 111:7574–7577CrossRefGoogle Scholar
  22. 22.
    Keller V, Bernhardt P, Garin F (2003) J Catal 215:129–138CrossRefGoogle Scholar
  23. 23.
    Chai SY, Kim YJ, Lee WI (2006) J Electroceram 17:909–912CrossRefGoogle Scholar
  24. 24.
    Chatchai P, Murakami Y, Kishioka S, Nosaka AY, Nosaka Y (2009) Electrochim Acta 54:1147–1152CrossRefGoogle Scholar
  25. 25.
    Huang T, Lin X, Xing J, Wang W, Shan Z, Huang F (2007) Mater Sci Eng B 141:49–54CrossRefGoogle Scholar
  26. 26.
    Gao B, Chakraborty AK, Yang JM, Lee WI (2010) Bull Korean Chem Soc 31:1941–1944CrossRefGoogle Scholar
  27. 27.
    Hameed A, Montini T, Gombac V, Fornasiero P (2008) J Am Chem Soc 130:9658–9659CrossRefGoogle Scholar
  28. 28.
    Morikawa T, Irokawa Y, Ohwaki T (2006) Appl Catal A 314:123–127CrossRefGoogle Scholar
  29. 29.
    Kwon YT, Song KY, Lee WI, Choi GJ, Do YR (2000) J Catal 191:192–199CrossRefGoogle Scholar
  30. 30.
    Chakraborty AK, Rawal SB, Han SY, Chai SY, Lee WI (2011) Appl Catal A Gen 407:217–223CrossRefGoogle Scholar
  31. 31.
    Pan JH, Lee WI (2006) Chem Mater 18:847–853CrossRefGoogle Scholar
  32. 32.
    Xu Y, Schoonen MAA (2000) Am Miner 85:543–556Google Scholar
  33. 33.
    Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) J Catal 262:144–149CrossRefGoogle Scholar
  34. 34.
    Ohko Y, Hashimoto K, Fujishima A (1997) J Phys Chem A 101:8057–8062CrossRefGoogle Scholar
  35. 35.
    Kim YI, Atherton SJ, Brigham ES, Mallouk TE (1993) J Phys Chem 97:11802–11810CrossRefGoogle Scholar
  36. 36.
    Butler MA, Ginley DS (1978) J Electrochem Soc 125:228–232CrossRefGoogle Scholar
  37. 37.
    Cheng H, Huang B, Dai Y, Qin X, Zhang X (2010) Langmuir 26:6618–6624CrossRefGoogle Scholar
  38. 38.
    Xiao Q, Zhang J, Xiao C, Tan X (2008) Catal Commun 9:1247–1253CrossRefGoogle Scholar
  39. 39.
    Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y (2006) J Phys Chem B110:20211–20216Google Scholar
  40. 40.
    Ke D, Liu H, Peng T, Liu X, Dai K (2008) Mater Lett 62:447–450CrossRefGoogle Scholar
  41. 41.
    Li D, Haneda H, Ohashi N, Hishita S, Yoshikawa Y (2004) Catal Today 93–95:895–901CrossRefGoogle Scholar
  42. 42.
    Tang JW, Zou ZG, Ye JH (2003) J Phys Chem B 107:14265–14269CrossRefGoogle Scholar
  43. 43.
    Gao B, Ma Y, Cao Y, Yang W, Yao J (2006) J Phys Chem B 110:14391–14397CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Ashok Kumar Chakraborty
    • 1
  • Mesfin Abayneh Kebede
    • 2
  1. 1.Department of Applied Chemistry and Chemical TechnologyIslamic UniversityKushtiaBangladesh
  2. 2.Materials Science and ManufacturingCouncil for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations