Reaction Kinetics, Mechanisms and Catalysis

, Volume 105, Issue 2, pp 413–427 | Cite as

Effect of the activation temperature on the catalytic activity of clinoptilolite for the benzoylation of biphenyl



The Friedel–Crafts benzoylation of biphenyl (BP) was carried out under liquid-phase batch conditions using raw and modified clinoptilolite zeolites as catalysts. Solventless benzoylation of BP with benzoyl chloride preferentially gave p-monoacylated product, 4-phenyl-benzophenone (4-PBP), as the main product for all catalysts used and only small amount of diacylated product, 4,4′-dibenzoylbiphenyl (4,4′-DBBP) was observed. The highest yield of 4-PBP was achieved by using HT-823 zeolite as catalyst. Calcined zeolites, except the clinoptilolite calcined at 1,023 K, are more active than their raw counterparts. Raw clinoptilolite gave 4-PBP yield of 48.5% while the HT-823 proves to be a highly efficient catalyst giving a very high selectivity to 4-PBP (~98.5%) with the conversion of BP ~86.9% at 453 K. The results revealed that zeolite HT-823 is the best catalyst for the benzoylation of biphenyl to 4-PBP. Also, increasing the reaction temperature appeared to play a significant role on the 4-PBP yield.


Zeolite Catalyst Acylation Clinoptilolite Biphenyl 


  1. 1.
    Sartori G, Maggi R (2010) Advances in Friedel-Crafts acylation reactions: catalytic and green processes. CRC Pres Inc, USAGoogle Scholar
  2. 2.
    Bauer K, Garbe D, Surburg H (1990) Common fragrance and flavor materials. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  3. 3.
    Olah GA (1964) Friedel–Crafts and related reactions, vol IV. Wiley-Interscience, New YorkGoogle Scholar
  4. 4.
    Sugi Y, Tawada S, Sugimura T, Kubota Y, Hanaoka T, Matsuzaki T, Nakajima K, Kunimori K (1999) Appl Catal A 189:251–261CrossRefGoogle Scholar
  5. 5.
    Das D, Cheng S (2000) Appl Catal A 201:159–168CrossRefGoogle Scholar
  6. 6.
    Richard F, Carreyre H, Perot G (1996) J Catal 159:427–434CrossRefGoogle Scholar
  7. 7.
    Jacob B, Sugunan S, Singh AP (1999) J Mol Catal A 139:43–53CrossRefGoogle Scholar
  8. 8.
    Subba Rao YV, Kulkarni SJ, Subrahmanyam M, Rama Rao AV (1995) Appl Cat A Gen 133:L1–L6CrossRefGoogle Scholar
  9. 9.
    Venkatesan C, Jaimol T, Moreau P, Finiels A, Ramaswamy AV, Singh AP (2001) Cat Lett 75:119–123CrossRefGoogle Scholar
  10. 10.
    Wagholikar SG, Niphadkar PS, Mayadevi S, Sivasanker S (2007) Appl Cat A Gen 317:250–257CrossRefGoogle Scholar
  11. 11.
    Heykants H, Verreslst WH, Patron RF, Jacobs PA (1997) Stud Surf Sci Catal 105:1277–1284CrossRefGoogle Scholar
  12. 12.
    Valdes MG, Perez-Cordoves AI, Diaz-Garcia ME (2006) Trends Anal Chem 25:24–30CrossRefGoogle Scholar
  13. 13.
    Ghiaci M, Abbaspur A, Kia R, Seyedeyn-Azad F (2004) Sep Purif Technol 40:217–229CrossRefGoogle Scholar
  14. 14.
    Lee S, Lee D, Shin C, Paik WC, Lee WM, Hong SB (2000) J Catal 196:158–166CrossRefGoogle Scholar
  15. 15.
    Akgül M, Karabakan A, Acar O, Yürüm Y (2006) Micropor Mesopor Mater 94:99–104CrossRefGoogle Scholar
  16. 16.
    Ackley MW (1992) Zeolites 12:780–788CrossRefGoogle Scholar
  17. 17.
    Akgül M, Karabakan A (2010) Micropor Mesopor Mater 131:238–244CrossRefGoogle Scholar
  18. 18.
    Bourgeat-Lami E, Massiani P, Di Renzo F, Espiau P, Fajula F (1991) Appl Catal 72:139–152CrossRefGoogle Scholar
  19. 19.
    Sterte J, Otterstedt JE (1988) Appl Catal 38:131–142CrossRefGoogle Scholar
  20. 20.
    Lischke G, Eckelt R, Jerschkewitz HG, Parllitz B, Schreier E, Storek W, Zibrowius B, Ohlmann G (1991) J Catal 132:229–243CrossRefGoogle Scholar
  21. 21.
    Datka J, Gil B, Kubacka A (1996) Zeolites 17:428–433CrossRefGoogle Scholar
  22. 22.
    Kunkeler PJ, Zuurdeeg BJ, van der Waal JC, van Bokhoven JA, Koningsberger DC, van Bekkum H (1998) J Catal 180:234–244CrossRefGoogle Scholar
  23. 23.
    Imelik B, Vedrine JC (1994) Catalyst characterization: physical techniques for solid materials. Plenum Press, New YorkGoogle Scholar
  24. 24.
    Maache M, Janin A, Lavalley JC, Joly JF, Benazzi E (1993) Zeolites 13:419–426CrossRefGoogle Scholar
  25. 25.
    Bortnovsky O, Sobalik Z, Wichterlova B, Bastl Z (2002) J Catal 210:171–182CrossRefGoogle Scholar
  26. 26.
    Datka J (1981) J Chem Soc Faraday Trans I 77:2877–2881CrossRefGoogle Scholar
  27. 27.
    Olah GA (1973) Friedel-Crafts chemistry. Wiley, New YorkGoogle Scholar
  28. 28.
    Tandlich R, Balaz S (2011) Afr J Agri Res 6:2321–2328Google Scholar
  29. 29.
    Uytterhoeven JB, Christner LG, Hall WK (1965) J Phys Chem 69:2117–2126CrossRefGoogle Scholar
  30. 30.
    Katada N, Nakata S, Kato S, Kanehashi K, Saito K, Niwa M (2005) J Mol Cat A Chem 236:239–245CrossRefGoogle Scholar
  31. 31.
    Cejka J, Prokesova P, Cerveny L, Mikulcova K (2002) Stud Surf Sci Catal 142A:627–634CrossRefGoogle Scholar
  32. 32.
    Toktarev AV, Malysheva LV, Raukshtis EA (2010) Kinet Catal 51:318–324CrossRefGoogle Scholar
  33. 33.
    Chidambaram M, Venkatesan C, Moreaub P, Finiels A, Ramaswamy AV, Singh AP (2002) Appl Cat A Gen 224:129–140CrossRefGoogle Scholar
  34. 34.
    De Lucas A, Ramos MJ, Dorado F, Sanchez P, Valverde JL (2005) Appl Cat A Gen 289:205–213CrossRefGoogle Scholar
  35. 35.
    Padro CL, Apesteguıa CR (2005) Cat Today 107/108:258–265CrossRefGoogle Scholar
  36. 36.
    Poh NE, Nur H, Muhid MNM, Hamdan H (2006) Cat Today 114:257–262CrossRefGoogle Scholar
  37. 37.
    Singh AP, Bhattacharya D, Sharma S (1995) J Mol Catal 102:139–145CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Department of ChemistryHacettepe UniversityAnkaraTurkey

Personalised recommendations