Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 104, Issue 2, pp 345–356 | Cite as

Kinetic study and modeling of the Rh-catalyzed hydrosilylation of acetophenone in a batch reactor and in a microreactor

  • Ekaterina S. Borovinskaya
  • Vladimir M. Uvarov
  • Frank Schael
  • Dimitry A. de Vekki
  • Wladimir Reschetilowski
Article

Abstract

The Rh-catalyzed hydrosilylation of acetophenone in the presence of [Rh(CO)2(μ-Cl)]2 and [Rh(COD)Cl]2 complexes, as well as with an in situ addition of nitrogen-containing derivatives of mono- and bicyclic terpenes was investigated in a flow microreactor and in a batch reactor. Kinetic modeling, reaction equilibrium analysis and multi-criteria optimization of the process were applied to compare the performances of the reactors. In general, the highest catalytic activity was reached in the presence of [Rh(COD)Cl]2 and [Rh(CO)2(μ-Cl)]2 without the addition of amines. The best reaction selectivity towards 1-phenylethanol silyl ether with the [Rh(CO)2(μ-Cl)]2 complex was observed in the microreactor. The addition of (R)-(−)-cis-MyrtNH2 and (R)-(+)-BornylNH2 amines, as well as an increase of the amine-to-rhodium molar ratio significantly decreased the conversion and selectivity in both reactors. In this connection, the [Rh(COD)Cl]2 complex demonstrated a better catalytic performance in all cases. The application of the flow microreactor promoted another elementary reaction pathway due to micromixing effects.

Keywords

Hydrosilylation Rhodium catalyst Micromixing Microreactor Kinetic modeling Multi-criteria optimization 

References

  1. 1.
    Sommer LH, Pietrusza EW, Withmore FC (1947) Peroxide-catalyzed addition of trichlorosilane to 1-octene. J Am Chem Soc 69:188CrossRefGoogle Scholar
  2. 2.
    Marciniec B (2009) In: Matisons J (ed) Advances in silicon science vol. 1, Hydrosilylation–a comprehensive review on recent advances. Springer, Berlin, pp 341–398Google Scholar
  3. 3.
    Marciniec B, Guliński J (1993) Recent advances in catalytic hydrosilylation. J Organomet Chem 446:15–23CrossRefGoogle Scholar
  4. 4.
    Marciniec B (2002) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol vol. 1, Chapter 2.6. Wiley-VCH Verlag, Weinheim, pp 491–512CrossRefGoogle Scholar
  5. 5.
    Yamamoto K, Uramoto Y, Kumada M (1971) Asymmetric hydrosilylation with a chiral phosphine-nickel(II) complex. J Organomet Chem 31:C9–C10CrossRefGoogle Scholar
  6. 6.
    Ojima I, Kogure T, Nagai Y (1973) Asymmetric reduction of ketones via hydrosilylation catalysed by a rhodium (I) complex with chiral phosphine ligands. Chem Lett 2:541–544CrossRefGoogle Scholar
  7. 7.
    Ojima I, Kogure T, Kumagai M, Horiuchi S, Sato T (1976) Reduction of carbonyl compounds via hydrosilylation: II. Asymmetric reduction of ketones via hydrosilylation catalyzed by a rhodium(I) complex with chiral phosphine ligands. J Organomet Chem 122:83–97CrossRefGoogle Scholar
  8. 8.
    Brunner H, Brandl P (1991) Enantioselective catalysis 74.1 ligand excess and intermediates in the rhodium-catalyzed enantioselective hydrosilylation of acetophenone with pyridineoxazoline ligands. Tetrahedron: Asymmetry 2:919–930CrossRefGoogle Scholar
  9. 9.
    Evans DA, Michael FE, Tedrow JS, Campos KR (2003) Application of chiral mixed phosphorus/sulfur ligands to enantioselective rhodium-catalyzed dehydroamino acid hydrogenation and ketone hydrosilylation processes. J Am Chem Soc 125:3534–3543CrossRefGoogle Scholar
  10. 10.
    Schneider N, Finger M, Haferkemper C, Bellemin-Laponnaz S, Hofmann P, Gade LH (2009) Metal silylenes generated by double silicon-hydrogen activation: key intermediates in the rhodium-catalyzed hydrosilylation of ketones. Angew Chem 121:1637–1641CrossRefGoogle Scholar
  11. 11.
    Gülcemal S, Labande A, Daran J-K, Çetinkaya B, Poli R (2009) Rhodium(I) complexes of new ferrocenyl benzimidazol-2-ylidene ligands. The importance of chelating effect for ketone hydrosilylation catalysis. Eur J Inorg Chem 13:1806–1815CrossRefGoogle Scholar
  12. 12.
    Uvarov VM, Borovinskaya ES, de Vekki DA, Reshetilovskii VP (2010) Experimental study and simulation of kinetics of acetophenone hydrosilylation with diphenylsilane in the presence of rhodium complexes in a microreactor. Russ J Gen Chem 80:2263–2273CrossRefGoogle Scholar
  13. 13.
    Mills PL, Quiram DJ, Ryley JF (2007) Microreactor technology and process miniaturization for catalytic reactions–a perspective on recent developments and emerging technologies. Chem Eng Sci 62:6992–7010CrossRefGoogle Scholar
  14. 14.
    Kashid MN, Kiwi-Minsker L (2009) Misconstructed reactors for multiphase reactions: State of the art. Ind Eng Chem Res 48:6465–6485CrossRefGoogle Scholar
  15. 15.
    Borovinskaya ES, Mammitzsch L, Uvarov VM, Schael F, Reschetilowski W (2009) Experimental investigation and modeling approach of the phenylacetonitrile alkylation process in a microreactor. Chem Eng Technol 32:919–925CrossRefGoogle Scholar
  16. 16.
    Modular microreaction technology (2008) Ehrfeld Mikrotechnik BTS GmbH. http://www.ehrfeld.com/downloads/emb_mrt-katalog%202008-08-05_de.pdf. Accessed 05 Aug 2008
  17. 17.
    Tao B, Fu G (2002) Application of a new family of P, N ligands to the highly enantioselective hydrosilylation of aryl alkyl and dialkyl ketones. Angew Chem Int Ed 41:3892–3894CrossRefGoogle Scholar
  18. 18.
    Coyne AG, Guiry PJ (2007) Rhodium-catalysed asymmetric hydrosilylation of ketones using HETPHOX ligands. Tetrahedron Lett 48:747–750CrossRefGoogle Scholar
  19. 19.
    Zheng GZ, Chan TH (1995) Regiocontrolled hydrosilation of.alpha, beta-unsaturated carbonyl compounds catalyzed by hydridotetrakis(triphenylphosphine)rhodium(I). Organometallics 14:70–79CrossRefGoogle Scholar
  20. 20.
    Harrington J (1965) The desirability function. Ind Qual Control 21:494–498Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Ekaterina S. Borovinskaya
    • 1
  • Vladimir M. Uvarov
    • 2
  • Frank Schael
    • 3
  • Dimitry A. de Vekki
    • 2
  • Wladimir Reschetilowski
    • 1
  1. 1.Institute of Industrial ChemistryDresden University of TechnologyDresdenGermany
  2. 2.St. Petersburg State University of TechnologySt. PetersburgRussia
  3. 3.Ehrfeld Mikrotechnik BTS GmbHWendelsheimGermany

Personalised recommendations