Reaction Kinetics, Mechanisms and Catalysis

, Volume 104, Issue 1, pp 61–73 | Cite as

Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals

  • Yanxiang Liu
  • Xujie Lu
  • Feng Wu
  • Nansheng Deng


The adsorption and photodegradation behavior of tetracycline (TC), chloramphenicol (CAP) and sulfamethoxazole (SMX) in clay mineral dispersion was investigated in this work. Only TC showed significant adsorption to natural montmorillonite and rectorite, whereas CAP and SMX adsorbed to natural montmorillonite, kaolinite and rectorite to a much lower extent. The adsorption equilibrium constants (L/kg) of TC to natural montmorillonite were 332 and 108 at pH 3.0 and 7.0, respectively. The kinetic rate constant k app (min−1) for the removal of CAP in the presence of different clay minerals follows the sequence: montmorillonite KSF (1.6 × 10−2) > rectorite (4.6 × 10−3) > natural montmorillonite (3.8 × 10−3) > kaolinite (2.8 × 10−3). Removal of SMX follows the same sequence. Oxalate significantly promotes the removal of CAP and SMX in montmorillonite KSF dispersion, while penicillamine (PEN) and β-cyclodextrin retard the diminution. After 3 h of irradiation in 5 g/L KSF dispersion, the total organic carbon was reduced by 72 and 39% for CAP and SMX, respectively.


PPCPs Clay minerals Adsorption Photodegradation 



This work was financed by the Natural Science Foundation of Hubei, China (No. 2009CDB159). The authors thank the anonymous reviewers for their comments.


  1. 1.
    Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  2. 2.
    Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371CrossRefGoogle Scholar
  3. 3.
    Onesios KM, Yu JT, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20:441–466CrossRefGoogle Scholar
  4. 4.
    Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41:1001–1012CrossRefGoogle Scholar
  5. 5.
    Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci Total Environ 311:135–149CrossRefGoogle Scholar
  6. 6.
    Dębska J, Kot-Wasik A, Namieśnik J (2004) Fate and analysis of pharmaceutical residues in the aquatic environment. Crit Rev Anal Chem 34:51–67CrossRefGoogle Scholar
  7. 7.
    Soliman MA, Pedersen JA, Park H, Castaneda-Jimenez A, Stenstrom MK, Suffet IH (2007) Human pharmaceuticals, antioxidants, and plasticizers in wastewater treatment plant and water reclamation plant effluents. Water Environ Res 79:156–167CrossRefGoogle Scholar
  8. 8.
    Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43:597–603CrossRefGoogle Scholar
  9. 9.
    Lamm A, Rotstein A, Gozlan I, Avisar D (2009) Detection of amoxicillin-diketopiperazine-2′, 5′ in wastewater samples. J Environ Sci Health A 44:1512–1517CrossRefGoogle Scholar
  10. 10.
    Gozlan I, Rotstein A, Avisar D (2010) Investigation of amoxicillin oxidative degradation product in environmental condition using natural sun and ozonation process. Environ Chem 7:435–442CrossRefGoogle Scholar
  11. 11.
    Khetan SK, Collins TJ (2007) Human Pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364CrossRefGoogle Scholar
  12. 12.
    Peuravuori J, Pihlaja K (2009) Phototransformations of selected pharmaceuticals under low-energy UVA–vis and powerful UVB–UVA irradiations in aqueous solutions—the role of natural dissolved organic chromophoric material. Anal Bioanal Chem 394:1621–1636CrossRefGoogle Scholar
  13. 13.
    Lorphensri O, Sabatini DA, Kibbey TCG, Osathaphan K, Saiwan C (2007) Sorption and transport of acetaminophen, 17α-ethynyl estradiol, nalidixic acid with low organic content aquifer sand. Water Res 41:2180–2188CrossRefGoogle Scholar
  14. 14.
    Wu CX, Spongberg AL, Witter JD (2009) Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. J Agric Food Chem 57:4900–4905CrossRefGoogle Scholar
  15. 15.
    Albini A, Fasani E (1998) Drugs: photochemistry and photostability. The Royal Society of Chemistry, CambridgeGoogle Scholar
  16. 16.
    Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photochem Photobiol C Photochem Rev 1:113–130CrossRefGoogle Scholar
  17. 17.
    Churchman GJ, Gates WP, Theng BKG, Yuan G (2006) Clays and clay minerals for pollution control. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, developments in clay science. Elsevier, Amsterdam, pp 625–675Google Scholar
  18. 18.
    Herney-Ramirez J, Lampinen M, Vicente MA, Costa CA, Madeira LM (2008) Experimental design to optimize the oxidation of orange II dye solution using a clay-based Fenton-like catalyst. Ind Eng Chem Res 47:284–294CrossRefGoogle Scholar
  19. 19.
    Noorjahan M, Kumari VD, Subrahmanyam M, Panda L (2005) Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl Catal B Environ 57:291–298CrossRefGoogle Scholar
  20. 20.
    Liu YX, Li J, Wu F, Zhang CB, Deng NS (2008) Insight into heterogeneous photocatalytic degradation of phenol over montmorillonite KSF. Chem Eng Commun 195:988–997CrossRefGoogle Scholar
  21. 21.
    El-Nahhal Y, Undabeytia T, Polubesova T, Mishael YG, Nir S, Rubin B (2001) Organo-clay formulations of pesticides: reduced leaching and photodegradation. Appl Clay Sci 18:309–326CrossRefGoogle Scholar
  22. 22.
    Lagaly G (2001) Pesticide–clay interactions and formulations. Appl Clay Sci 18:205–209CrossRefGoogle Scholar
  23. 23.
    Emmerik TV, Angove MJ, Johnson BB, Wells JD, Fernandes MB (2003) Sorption of 17 β-estradiol onto selected soil minerals. J Colloid Interface Sci 266:33–39CrossRefGoogle Scholar
  24. 24.
    Liu YX, Zhang X, Guo L, Wu F, Deng NS (2008) Photodegradation of bisphenol A in the montmorillonite KSF suspended solutions. Ind Eng Chem Res 47:7141–7146CrossRefGoogle Scholar
  25. 25.
    Avisar D, Primor O, Mamane H (2010) Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water Air Soil Pollut 209:439–445CrossRefGoogle Scholar
  26. 26.
    Liu YX, Wan K, Deng NS, Wu F (2010) Photodegradation of paracetamol in montmorillonite KSF suspension. React Kinet Mech Catal 99:493–502Google Scholar
  27. 27.
    Stephens CR, Murai K, Brunings KJ, Woodward RB (1956) Acidity constants of the tetracycline antibiotics. J Am Chem Soc 78:4155–4158CrossRefGoogle Scholar
  28. 28.
    Sharer WC, Fair WR (1982) The pharmacokinetics of antibiotic diffusion in chronic bacterial prostatitis. Prostate 3:139–148CrossRefGoogle Scholar
  29. 29.
    Shi XZ, Wu AB, Zheng SL, Li RX, Zhang DB (2007) Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. J Chromatogr B 850:24–30CrossRefGoogle Scholar
  30. 30.
    Wu ZG, Zhou CX, Qi RR, Zhang HB (2002) Synthesis and characterization of nylon 1012/clay nanocomposite. J Appl Polym Sci 83:2403–2410CrossRefGoogle Scholar
  31. 31.
    Mehra OP, Jackson ML (1958) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327CrossRefGoogle Scholar
  32. 32.
    Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ (2008) Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci 40:179–186CrossRefGoogle Scholar
  33. 33.
    Chang PH, Jean JS, Jiang WT, Li ZH (2009) Mechanism of tetracycline sorption on rectorite. Colloid Surf A 339:94–99CrossRefGoogle Scholar
  34. 34.
    Liu YX, Zhang X, Wu F (2010) Photodegradation of bisphenol AF in montmorillonite dispersions: kinetics and mechanism study. Appl Clay Sci 49:182–186CrossRefGoogle Scholar
  35. 35.
    Li FB, Li XZ, Liu CS, Li XM, Liu TX (2007) Effect of oxalate on photodegradation of bisphenol A at the interface of different iron oxides. Ind Eng Chem Res 46:781–787CrossRefGoogle Scholar
  36. 36.
    Brown DH, Smith WE (1984) Reactions of d-penicillamine with some metals and alloys. Inorg Chim Acta 93:29–30CrossRefGoogle Scholar
  37. 37.
    Mtiller A, Straube M, Krickemeyer E, Bögge H, Mertz DP (1992) Isolation of the first crystalline d-penicillamine complex of iron and some remarks on relevant aspects of metal-chelating drugs as well as metabolism disorders. Naturwissenschaften 79:323–325CrossRefGoogle Scholar
  38. 38.
    Armstrong WA (1969) Relative rate constants for reactions of hydroxyl radicals from the reaction of Fe(II) or Ti(III) with H2O2. Can J Chem 47:3737–3744CrossRefGoogle Scholar
  39. 39.
    Getoff N, Schworer F, Markovic VM, Sehested K, Nielsen SO (1971) Pulse radiolysis of oxalic acid and oxalates. J Phys Chem 75:749–755CrossRefGoogle Scholar
  40. 40.
    Kapoor S, Varshney L (1997) Redox reactions of chloramphenicol and some aryl peroxyl radicals in aqueous solutions: a pulse radiolytic study. J Phys Chem A 101:7778–7782CrossRefGoogle Scholar
  41. 41.
    Douhal A (2006) Chemical, physical and biological aspects of confined systems. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Yanxiang Liu
    • 1
  • Xujie Lu
    • 1
  • Feng Wu
    • 2
  • Nansheng Deng
    • 2
  1. 1.School of Chemical and Environmental EngineeringJianghan UniversityWuhanPeople’s Republic of China
  2. 2.School of Resources and Environmental ScienceWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations