Reaction Kinetics, Mechanisms and Catalysis

, Volume 104, Issue 2, pp 313–321 | Cite as

Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid

  • Zhenwu Fu
  • Hui Wan
  • Qun Cui
  • Jiahua Xie
  • Yongjian Tang
  • Guofeng Guan


A carbon-based solid acid catalyst is prepared by incomplete carbonization of sulfonated naphthalene and used for the hydrolysis of carboxylic acid esters. XRD, FT-IR, TGA and acid density test are employed to characterize the structure and performance of the catalysts. The results show that the catalysts prepared under different synthesis temperature and time are amorphous carbon composed of small aromatic carbon sheets with –SO3H groups. The catalytic activities of catalysts for methyl acetate hydrolysis are closely related with their acid densities. The appropriate synthesis temperature and time for the catalyst are 230 °C and 12 h and the acid density of catalyst under the optimized conditions can reach 4.49 mmol g−1. The carbon-based solid acid shows higher catalytic activity than Amberlyst-15 resin as a popular hydrolysis catalyst for a series of carboxylic acid esters hydrolysis. The catalyst has good thermal stability, which can bear 250 °C without decomposition. It also remains satisfactory catalytic activity for methyl acetate hydrolysis after six times recycling.


Carbon-based solid acid Hydrolysis Carboxylic acid esters Catalytic activity 



This work is supported by the National Key Technology R&D Program of China (No. 2011BAE05B03) and PhD thesis innovation fund, Nanjing University of Technology (Grant No. 38001022).


  1. 1.
    Namba S, Hosonuma N, Yashima T (1981) J Catal 72:16–20CrossRefGoogle Scholar
  2. 2.
    Okuyama K, Chen X, Takata K, Odawara D, Suzuki T, Nakata S, Okuhara T (2000) Appl Catal A Gen 190:253–260CrossRefGoogle Scholar
  3. 3.
    Du J, Jiang BY, Kou XM, Zeng XC, Xiang QX (2002) J Colloid Interface Sci 256:428–434CrossRefGoogle Scholar
  4. 4.
    Falka T, Seidel-Morgensterna A (2002) Chem Eng Sci 57:1599–1606CrossRefGoogle Scholar
  5. 5.
    Saki N, Akkaya EU (2004) J Mol Catal A Chem 219:227–232CrossRefGoogle Scholar
  6. 6.
    Horita N, Yoshimune M, Kamiya Y, Okuhara T (2005) Chem Lett 34:1376–1377CrossRefGoogle Scholar
  7. 7.
    Venkatachalam TK, Samuel P, Uckun FM (2005) Bioorg Med Chem 13:1763–1773CrossRefGoogle Scholar
  8. 8.
    Lin YD, Chen JH, Cheng JK, Huang HP, Yu CC (2008) Chem Eng Sci 63:1668–1682CrossRefGoogle Scholar
  9. 9.
    Metwally MS, Abdel Razik A, El Hadi MF, Ei-Wardany MA (1993) React Kinet Catal Lett 49:151–159CrossRefGoogle Scholar
  10. 10.
    Clark JH (2002) Acc Chem Res 35:791–797CrossRefGoogle Scholar
  11. 11.
    Horton B (1999) Nature 400:797–799CrossRefGoogle Scholar
  12. 12.
    Nakajima K, Hara M (2007) J Am Ceram Soc 90:3725–3734Google Scholar
  13. 13.
    Okuhara T (2002) Chem Rev 102:3641–3666CrossRefGoogle Scholar
  14. 14.
    Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) Nature 416:304–307CrossRefGoogle Scholar
  15. 15.
    Wilson K, Lee AF, Macquarie DJ, Clark JH (2002) Appl Catal A Gen 228:127–133CrossRefGoogle Scholar
  16. 16.
    Cano-Serrano E, Campos-Martin JM, Fierro JLG (2003) Chem Commun 247:246–247CrossRefGoogle Scholar
  17. 17.
    Molnar A (2008) Curr Org Chem 12:159–181CrossRefGoogle Scholar
  18. 18.
    López DE, Goodwin JG Jr, Bruce DA (2007) J Catal 245:381–391CrossRefGoogle Scholar
  19. 19.
    Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S, Domen K (2004) Angew Chem Int Ed 43:2955–2958CrossRefGoogle Scholar
  20. 20.
    Shokrolahi A, Zali A, Pouretedal HR, Mahdavi M (2008) Catal Commun 9:859–863CrossRefGoogle Scholar
  21. 21.
    Tsubouchi N, Xu C, Ohtsuka Y (2003) Energy Fuels 17:1119–1125CrossRefGoogle Scholar
  22. 22.
    Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Chem Mater 18:3039–3045CrossRefGoogle Scholar
  23. 23.
    Zhang BH, Ren JW, Liu XH, Guo Y, Guo YL, Lu GZ, Wang YQ (2010) Catal Commun 11:629–632CrossRefGoogle Scholar
  24. 24.
    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) J Am Chem Soc 130:12787–12793CrossRefGoogle Scholar
  25. 25.
    Taft RW, Newman MSS (1956) Steric effects in organic chemistry. Wiley, New YorkGoogle Scholar
  26. 26.
    Mo XH, López DE, Suwannakarn K, Liu YJ, Lotero E, Goodwin JG Jr, Lu CQ (2008) J Catal 254:332–338CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Zhenwu Fu
    • 1
  • Hui Wan
    • 1
  • Qun Cui
    • 1
  • Jiahua Xie
    • 1
  • Yongjian Tang
    • 1
  • Guofeng Guan
    • 1
  1. 1.College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations