Reaction Kinetics, Mechanisms and Catalysis

, Volume 103, Issue 1, pp 227–237 | Cite as

Degradation of paraquat under visible light over fullerene modified V-TiO2

  • Ekkachai Kanchanatip
  • Nurak Grisdanurak
  • Raumporn Thongruang
  • Arthit Neramittagapong


V-TiO2 and C60/V-TiO2 photocatalysts were synthesized by titanium(IV) isopropoxide using a chelation sol–gel and impregnation method. All catalysts were calcined at 450 °C for 5 h, which resulted in them being in the anatase phase. The catalysts were characterized by thermogravimetric analysis and differential thermal analysis (TGA–DTA), X-ray diffractometry (XRD), UV–vis diffuse reflectance (UV–DR) spectra, Brunauer–Emmett–Teller (BET) surface area analyses, photoluminescence (PL) spectra, and zeta potential, and tested for their paraquat photodegradation ability under visible light. An insignificant decrease in surface area was observed in the modified catalysts. The modified photocatalysts exhibited higher visible light responses, ranking them as follows: 1C60/1 V-TiO2 > 1 V-TiO2 > TiO2 (composition in wt%). 1wt% C60/1wt% V-TiO2 performed higher activity than 1wt% V-TiO2. The kinetics of paraquat photocatalytic degradation was expressed by the Langmuir–Hinshelwood (LH) model with a rate constant of 0.171 mg/L min−1.


Vanadium Fullerene Photocatalysis Visible light Paraquat 



The authors acknowledge the National Research University Project of Thailand Office of Higher Education Commission, for its financial support.


  1. 1.
    Bismuth C, Scherrmann JM, Garnier R, Baud FJ, Pontal PG (1987) Hum Toxicol 6:63CrossRefGoogle Scholar
  2. 2.
    Isenring R (2006) Paraquat: unacceptable health risks for users. Pesticide Action Network, Berne Declaration, UK, Asia PacificGoogle Scholar
  3. 3.
    Maruszewski K, Jasiorski M, Hreniak D, Strek W (2001) J Mol Struct 597:273CrossRefGoogle Scholar
  4. 4.
    Amondham W, Parkpian P, Polprasert C, Delaune RD, Jugsujinda A (2006) J Environ Sci Health B 41:485Google Scholar
  5. 5.
    Moctezuma E, Leyva E, Monreal E, Villegas N (1999) Chemosphere 39:511CrossRefGoogle Scholar
  6. 6.
    Florêncio MH, Pires E, Castro AL, Nunes MR, Borges C, Costa FM (2004) Chemosphere 55:345CrossRefGoogle Scholar
  7. 7.
    Cantavenera MJ, Catanzaro I, Loddo V, Palmisano L, Sciandrello G (2007) J Photochem Photobiol A 185:277CrossRefGoogle Scholar
  8. 8.
    Tennakone K, Kottegoda IRM (1996) J Photochem Photobiol A 93:79CrossRefGoogle Scholar
  9. 9.
    Liu Z, Ya J, Lie E, Xin Y, Zhao W (2010) Mater Chem Phys 120:277CrossRefGoogle Scholar
  10. 10.
    Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354CrossRefGoogle Scholar
  11. 11.
    Górska P, Zaleska A, Kowalska E, Klimczuk T, Sobczak JW, Skwarek E, Janusz W, Hupka J (2008) Appl Catal B Environ 84:440CrossRefGoogle Scholar
  12. 12.
    Gasanly NM (2010) Cryst Res Tech 45:525CrossRefGoogle Scholar
  13. 13.
    Mu S, Long Y, Kang SZ, Mu J (2010) Catal Commun 11:741CrossRefGoogle Scholar
  14. 14.
    Liu B, Wang X, Cai G, Wen L, Song Y, Zhao X (2009) J Hazard Mater 169:1112CrossRefGoogle Scholar
  15. 15.
    Apostolopoulou V, Vakros J, Kordulis C, Lycourghiotis A (2009) Coll Surf A 349:189CrossRefGoogle Scholar
  16. 16.
    Liao DL, Wu GS, Liao BQ (2009) Coll Surf A 348:270CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Ekkachai Kanchanatip
    • 1
  • Nurak Grisdanurak
    • 1
    • 2
  • Raumporn Thongruang
    • 3
  • Arthit Neramittagapong
    • 4
  1. 1.Department of Chemical EngineeringThammasat UniversityPathumthaniThailand
  2. 2.NCE for Environmental and Hazardous Waste ManagementThammasat UniversityPathumthaniThailand
  3. 3.Department of PhysicsThammasat UniversityPathumthaniThailand
  4. 4.Department of Chemical EngineeringKhonKaen UniversityKhonKaenThailand

Personalised recommendations