Reaction Kinetics, Mechanisms and Catalysis

, Volume 102, Issue 2, pp 377–391 | Cite as

Direct amination of toluene to toluidine with hydroxylamine over CuO–V2O5/Al2O3 catalysts

  • Liya Gao
  • Dongsheng Zhang
  • Yanji Wang
  • Wei Xue
  • Xinqiang Zhao


A series of CuO–V2O5/Al2O3 catalysts were prepared and characterized by various techniques such as XRF, BET, XPS and XRD. These catalysts were used for liquid-phase amination of toluene to toluidines. It was found that adding copper species to V2O5/Al2O3 catalyst showed a peculiar behavior, maintaining a high activity toward toluene amination. An optimum CuO content appeared at 1.6 wt% with a CuO/V2O5 molar ratio of 0.25. More than 60% total yield of toluidines was obtained over 1.6%CuO–15%V2O5/Al2O3 catalyst under optimized conditions. Catalyst characterizations revealed that the addition of copper improved the formation of V5+ species, thus enhancing the activity of the catalyst.


Toluene Hydroxylamine Amination Toluidine Copper Vanadium 



The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 20876033, 20906018, 20706011, 20636030) and the Postdoctoral Science Foundation of Hebei Province.


  1. 1.
    Henke CO, Brown OW (1923) J Phys Chem 27:52–64CrossRefGoogle Scholar
  2. 2.
    Kumbhar PS, Sanchez-Valente J, Millet JMM, Figueras F (2000) J Catal 191:467–473CrossRefGoogle Scholar
  3. 3.
    Arai M, Obata A, Nishiyama Y (1997) React Kinet Catal Lett 61:275–280CrossRefGoogle Scholar
  4. 4.
    Barker RS (1966) US Patent 3272865Google Scholar
  5. 5.
    Downing RS, Kunkeler PJ, van Bekkum H (1997) Catal Today 37:121–136CrossRefGoogle Scholar
  6. 6.
    Hagemeyer A, Borade R, Desrosiers P, Guana S, Lowe DM, Poojary DM, Turner H, Weinberg H, Zhou X, Armbrust R, Fengler G, Notheis U (2002) Appl Catal A: Gen 227:43–61CrossRefGoogle Scholar
  7. 7.
    Squire EN, Pa GM (1975) US Patent 3919155Google Scholar
  8. 8.
    Becker J, Hölderich WF (1998) Catal Lett 54:125–128CrossRefGoogle Scholar
  9. 9.
    Hoffmann N, Muhler M (2005) Catal Lett 103:155–159CrossRefGoogle Scholar
  10. 10.
    Poojary DM, Borade R, Hagemeyer A, Zhou XP, Dube CE, Notheis U, Armbrust R, Rasp C, Lowe DM (2005) US Patent 6933409B1Google Scholar
  11. 11.
    Desrosiers P, Guan S, Hagemeyer A, Lowe DM, Lugmair C, Poojary DM, Turner H, Weinberg H, Zhou X, Armbrust R, Fengler G, Notheis U (2003) Catal Today 81:319–328CrossRefGoogle Scholar
  12. 12.
    Keller RN, Smith Peter PAS (1944) J Am Chem Soc 66:1122–1124CrossRefGoogle Scholar
  13. 13.
    Turski JS (1946) US Patent 2401525Google Scholar
  14. 14.
    Turski JS (1952) US Patent 2585355Google Scholar
  15. 15.
    Mantegazza MA, Milan MP, Galliate GP, Saronno PR (1994) US Patent 5320819Google Scholar
  16. 16.
    Langer SH (1992) Platinum Metals Rev 36:202–213Google Scholar
  17. 17.
    Zhu LF, Guo B, Tang DY, Hu XK, Li GY, Hu CW (2007) J Catal 245:446–455CrossRefGoogle Scholar
  18. 18.
    Lu YF, Zhu LF, Liu QY, Guo B, Hu XK, Hu CW (2009) Chinese Chem Lett 20:238–240CrossRefGoogle Scholar
  19. 19.
    Parida KM, Dash SS, Singha S (2008) Appl Catal A: Gen 351:59–67CrossRefGoogle Scholar
  20. 20.
    Parida KM, Rash DR, Dash SS (2010) J Mol Catal A: Chem 318:85–93CrossRefGoogle Scholar
  21. 21.
    Kuznetsova NI, Kuznetsova LI, Detushev LG, Likholobov VA, Pez GP, Cheng H (2000) J Mol Catal A: Chem 161:1–9CrossRefGoogle Scholar
  22. 22.
    Yu T, Hu C, Wang X (2005) Chem Lett 34:406–407CrossRefGoogle Scholar
  23. 23.
    Tomat R, Rigo A (1977) J Electroanal Chem 75:629–635Google Scholar
  24. 24.
    Jiang X, Lou L, Chen Y, Zheng X (2003) J Mol Catal A: Chem 197:193–205CrossRefGoogle Scholar
  25. 25.
    Kim T, Wachs IE (2008) J Catal 255:197–205CrossRefGoogle Scholar
  26. 26.
    Suárez S, Martín JA, Yates M, Avila P, Blanco J (2005) J Catal 229:227–236CrossRefGoogle Scholar
  27. 27.
    Reddy EP, Varma RS (2004) J Catal 221:93–101CrossRefGoogle Scholar
  28. 28.
    Arnby K, Rahmani M, Sanati M, Cruise N, Carlsson AA, Skoglundh M (2004) Appl Catal B: Environ 54:1–7CrossRefGoogle Scholar
  29. 29.
    García-Serrano J, Galindo AG, Pal U (2004) Sol Energy Mater Sol Cells 82:291–298CrossRefGoogle Scholar
  30. 30.
    Khalfallah Boudali L, Ghorbel A, Grange P, Figueras F (2005) Appl Catal B: Environ 59:105–111CrossRefGoogle Scholar
  31. 31.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X ray photoelectron spectroscopy. Perkin-Elmer, Eden PrairieGoogle Scholar
  32. 32.
    Liu Q, Liu Z, Wu W (2009) Catal Today 147S:S285–S289CrossRefGoogle Scholar
  33. 33.
    Zhou J, Xia QH, Shen SC, Kawi S, Hidajat K (2004) J Catal 225:128–137CrossRefGoogle Scholar
  34. 34.
    Wu Y, Fang S, Jiang Y (1998) J Power Sources 75:167–170CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  • Liya Gao
    • 1
  • Dongsheng Zhang
    • 1
  • Yanji Wang
    • 1
  • Wei Xue
    • 1
  • Xinqiang Zhao
    • 1
  1. 1.Key Laboratory of Green Chemical Technology & High Efficient Energy Saving of Hebei ProvinceHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations