Reaction Kinetics, Mechanisms and Catalysis

, Volume 100, Issue 2, pp 407–415 | Cite as

Macrolactonization of methyl 15-hydroxypentadecanoate to cyclopentadecanolide over Mo–Fe/HZSM-5 catalyst

  • Fang Lai
  • Xiongmin Liu
  • Weiguang Li
  • Fang Shen


The Mo–Fe/HZSM-5 catalyst was prepared by the impregnation method using citric acid to form Fe3+ and Mo6+ chelates in the impregnation solution. The structure, acidity and the catalytic performance for the macrolactonization of methyl 15-hydroxypentadecanoate to cyclopentadecanolide over Mo–Fe/HZSM-5 catalyst in comparison with unmodified HZSM-5, Fe/HZSM-5 and Mo/HZSM-5 catalysts were studied. The results indicate that the optimum ratio of Mo/Fe is 2.5. The Fe2(MoO4)3 and Al2(MoO4)3 species are formed on the Mo–Fe/HZSM-5 catalyst, with an increase of strength and slight diminution of the amount of acid sites. The Mo–Fe/HZSM-5 catalyst exhibited high activity for the selective macrolactonization of methyl 15-hydroxypentadecanoate to cyclopentadecanolide.


Mo–Fe/HZSM-5 Macrolactonization Methyl 15-hydroxypentadecanoate Cyclopentadecanolide 



We are grateful for the support of the Natural Science Foundation of Guangxi Zhuang Autonomous Region of China (No GKZ 0135013). Lastly, we are full of gratitude to Dr. Min Ling for checking our manuscript.


  1. 1.
    Gautschi M, Bajgrowicz JA, Kraft P (2001) Chimia 55:379Google Scholar
  2. 2.
    Kraft P, Frater G (2001) Chirality 13:388CrossRefGoogle Scholar
  3. 3.
    Ishihara K, Kubota M, Kurihara H, Yamamoto H (1996) J Org Chem 61:4560CrossRefGoogle Scholar
  4. 4.
    Mukaiyama T, Izumi J, Shiina I (1997) Chem Lett 26:187CrossRefGoogle Scholar
  5. 5.
    Keck GE, Sanchez C, Wager CA (2000) Tetrahedron Lett 41:8673–8676CrossRefGoogle Scholar
  6. 6.
    Shiina I, Kubota K, Ibuka R (2002) Tetrahedron Lett 43:7535–7539CrossRefGoogle Scholar
  7. 7.
    Liu X, Li W, Li P, Zhou Y (2007) J Chem J Chin Univ 28(5):897–899 (in Chinese)Google Scholar
  8. 8.
    Ookoshi T, Onaka M (1998) Tetrahedron Lett 39:293–296CrossRefGoogle Scholar
  9. 9.
    Kirumakki SR, Nagaraju N, Murthy KVVSBSR et al (2002) Appl Catal A 226:175–182CrossRefGoogle Scholar
  10. 10.
    Peng J, Chen P, Lou H et al (2009) Bioresour Technol 100:3415–3418CrossRefGoogle Scholar
  11. 11.
    Kirumakki SR, Nagaraju N, Chary KVR et al (2003) Appl Catal A 248:161–167CrossRefGoogle Scholar
  12. 12.
    Zhu X, Yu K, Cheng D, Zhang Y, Xia Q, Liu C (2008) Front Chem Eng China 2(1):55–58CrossRefGoogle Scholar
  13. 13.
    Wu P, Kan Q, Wang D, Xing H, Yang P, Wua T (2005) Appl Catal A: Gen 282:39–44CrossRefGoogle Scholar
  14. 14.
    Liu S, Wang L, Ohnishi R, Ichikawa M (1999) J Catal 181:175CrossRefGoogle Scholar
  15. 15.
    Lu J, Zhao Z, Xu C, Duan A, Wang X, Zhang P (2008) J Porous Mater 15:213–220CrossRefGoogle Scholar
  16. 16.
    Masiero SS, Marcilio NR, Perez-Lopez OW (2009) Catal Lett 131:194–202CrossRefGoogle Scholar
  17. 17.
    Liu H, Li Y, Shen W, Bao X, Xu Y (2004) Catal Today 93–95:65CrossRefGoogle Scholar
  18. 18.
    Kentgens M, Scholl J, Veeman S (1983) J Phys Chem 87:4357CrossRefGoogle Scholar
  19. 19.
    Li Y, Liu L, Huang X, Liu X, Shen W, Xu Y, Bao X (2007) Catal Commun 8:1567CrossRefGoogle Scholar
  20. 20.
    Tessonnier J, Louis B, Rigolet S, Ledoux MJ, Pham-Huu C (2008) Appl Catal A 336:79CrossRefGoogle Scholar
  21. 21.
    Li B, Li S, Li N, Chen H, Zhang W, Bao X, Lin B (2006) Microporous Mesoporous Mater 88:24Google Scholar
  22. 22.
    Tessonnier J, Louis B, Walspurger S, Sommer J, Ledoux M, Pham-Huu C (2006) J Phys Chem B 110:10390CrossRefGoogle Scholar
  23. 23.
    Tan PL, Au CT, Lai SY (2007) Appl Catal A 324:36CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Fang Lai
    • 1
  • Xiongmin Liu
    • 1
  • Weiguang Li
    • 1
  • Fang Shen
    • 1
  1. 1.Fine Chemical Engineering Laboratory, College of Chemistry and Chemical EngineeringGuangxi UniversityNanningPeople’s Republic of China

Personalised recommendations