Reaction Kinetics, Mechanisms and Catalysis

, Volume 99, Issue 2, pp 391–396 | Cite as

Synthesis of polyethylene glycol supported chiral monosulfonamide and its application in asymmetric transfer hydrogenation of prochiral ketones

  • Zhongqiang Zhou
  • Yong Sun


A new polyethylene glycol supported chiral monosulfonamide was conveniently synthesized from (R,R)-1,2-diphenylethylenediamine. The ruthenium catalyst prepared from polyethylene glycol supported chiral monosulfonamide with [RuCl2(p-cymene)]2 was used in the asymmetric transfer hydrogenation of prochiral ketones in neat water with good to excellent conversions and enantioselectivities. The catalyst could be easily recovered and reused several times.


Asymmetric transfer hydrogenation Chiral monosulfonamide Water Ketones 



Financial support of this work by the Natural Science Foundation of Hubei Province (2007ABA291) is gratefully acknowledged.


  1. 1.
    Minakata S, Komatsu M (2009) Chem Rev 109:711CrossRefGoogle Scholar
  2. 2.
    Li CJ, Chen L (2006) Chem Soc Rev 35:68CrossRefGoogle Scholar
  3. 3.
    Lindstrom UM, Andersson F (2006) Angew Chem Int Ed Engl 45:548CrossRefGoogle Scholar
  4. 4.
    Pirrung MC (2006) Chem Eur J 12:1312CrossRefGoogle Scholar
  5. 5.
    Li CJ (2005) Chem Rev 105:3095CrossRefGoogle Scholar
  6. 6.
    Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) J Am Chem Soc 117:7562CrossRefGoogle Scholar
  7. 7.
    Ahlford K, Lind J, Maler L, Adolfsson H (2008) Green Chem 10:832CrossRefGoogle Scholar
  8. 8.
    Wu X, Li X, Zanotti-Gerosa A, Pettman A, Liu J, Mills AJ, Xiao J (2008) Chem Eur J 14:2209CrossRefGoogle Scholar
  9. 9.
    Li L, Wu J, Wang F, Liao J, Zhang H, Lian C, Zhu J, Deng J (2007) Green Chem 9:23CrossRefGoogle Scholar
  10. 10.
    Wu XF, Li XG, Hems W, King F, Xiao JL (2004) Org Biomol Chem 2:1818CrossRefGoogle Scholar
  11. 11.
    Thorpe T, Blacker J, Brown SM, Bubert C, Crosby J, Fitzjohn S, Muxworthy JP, Williams JMJ (2001) Tetrahedron Lett 42:4041CrossRefGoogle Scholar
  12. 12.
    Bubert C, Blacker J, Brown SM, Crosby J, Fitsjohn S, Muxworthy JP, Thorpe T, Williams JMJ (2001) Tetrahedron Lett 42:4037CrossRefGoogle Scholar
  13. 13.
    Cortez NA, Aguirre G, Parra-Hake M, Somanathan R (2009) Tetrahedron Lett 50:2228CrossRefGoogle Scholar
  14. 14.
    Li J, Zhang Y, Han D, Gao Q, Li C (2009) J Mol Catal A 298:31CrossRefGoogle Scholar
  15. 15.
    Liu J, Zhou Y, Wu Y, Li X, Chan ASC (2008) Tetrahedron Asymmetry 19:832CrossRefGoogle Scholar
  16. 16.
    Arakawa Y, Chiba A, Haraguchi N, Itsuno S (2008) Adv Synth Catal 350:2295CrossRefGoogle Scholar
  17. 17.
    Yang HQ, Li J, Yang J, Liu ZM, Yang QH, Li C (2007) Chem Commun 1086Google Scholar
  18. 18.
    Arakawa Y, Haraguchi N, Itsuno S (2006) Tetrahedron Lett 47:3239CrossRefGoogle Scholar
  19. 19.
    Liu PN, Deng JG, Tu YQ, Wang SH (2004) Chem Commun 2070Google Scholar
  20. 20.
    Li XG, Wu XF, Chen WP, Hancock FE, King F, Xiao JL (2004) Org Lett 6:3321CrossRefGoogle Scholar
  21. 21.
    Chen YC, Wu TF, Deng JG, Liu H, Cui X, Zhu J, Jiang YZ, Choi MCK, Chan ASC (2002) J Org Chem 67:5301CrossRefGoogle Scholar
  22. 22.
    Basavaiah D, Reddy GJ, Rao KV (2004) Tetrahedron Asymmetry 15:1881CrossRefGoogle Scholar
  23. 23.
    Ohkuma T, Tsutsumi K, Utsumi N, Arai N, Noyori R, Murata K (2007) Org Lett 9:255CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Chemistry and Materials ScienceSouth-Central University for NationalitiesWuhanChina

Personalised recommendations