Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 99, Issue 2, pp 381–389 | Cite as

Reaction of zinc oxide with urea and its role in urea methanolysis

  • Hui Wang
  • Mouhua Wang
  • Wenbo Zhao
  • Wei Wei
  • Yuhan Sun
Article

Abstract

The reaction of urea with ZnO was investigated by FTIR and TPD. It was found that urea was thermally decomposed into isocyanic acid on ZnO, and the adsorbed isocyanic acid reacted with ZnO to form zinc isocyanate. Catalytic evaluation showed that ZnO had high activity towards urea methanolysis in a batch reactor, and zinc element and isocyanate were all detected in the product solution. Furthermore, the soluble zinc content was proportional to the DMC yield. Sample analyses suggested that the soluble zinc existed in the form of Zn(NCO)2(NH3)2, which originated from the reaction of ZnO with urea. It was the complex (not ZnO) that catalyzed the urea methanolysis. Based on these observations, a possible mechanism was suggested.

Keywords

Dimethyl carbonate Urea Methanol ZnO FTIR 

References

  1. 1.
    Shaikh AG, Sivaram S (1996) Chem Rev 96:951CrossRefGoogle Scholar
  2. 2.
    Ono Y (1997) Appl Catal A: Gen 155:133CrossRefGoogle Scholar
  3. 3.
    Pacheco MA, Marshall CL (1997) Energy Fuels 11:2CrossRefGoogle Scholar
  4. 4.
    Wang M, Wang H, Zhao N, Wei W, Sun Y (2006) Catal Commun 7:6CrossRefGoogle Scholar
  5. 5.
    Ryu JY (1999) Process for making dialkyl carbonates. US Patent Number: 5,902,894Google Scholar
  6. 6.
    Saleh RY, Michaelson RC, Suciu EN, Kuhllmann B (1996) Process for manufacturing dialkyl carbonate from urea and alcohol. US Patent Number: 5,565,603Google Scholar
  7. 7.
    Cho Ts, Tamura T, Cho To, Suzuki K (1996) Process for preparing dialkyl carbonates. US Patent Number: 5,534,649Google Scholar
  8. 8.
    Sun J, Yang B, Wang X, Wang D, Lin H (2005) J Mol Catal A: Chem 239:82CrossRefGoogle Scholar
  9. 9.
    Ryu JY, Gelbein AP (2002) Process and catalyst for making dialkyl carbonates. US Patent Number: 6,392,078Google Scholar
  10. 10.
    Suciu EN, Kuhlmann B, Knudsen GA, Michaelson RC (1998) J Organomet Chem 556:41CrossRefGoogle Scholar
  11. 11.
    Fu Y, Zhu H, Shen J (2005) Thermochim Acta 434:88CrossRefGoogle Scholar
  12. 12.
    Wang M, Zhao N, Wei W, Sun Y (2004) Stud Surf Sci Catal 153:197CrossRefGoogle Scholar
  13. 13.
    Wang M, Zhao N, Wei W, Sun Y (2005) Ind Eng Chem Res 44:7596CrossRefGoogle Scholar
  14. 14.
    Zhao W, Wang F, Peng W, Zhao N, Li J, Xiao F, Wei W, Sun Y (2008) Ind Eng Chem Res 47:5913CrossRefGoogle Scholar
  15. 15.
    Wang D, Yang B, Zhai X, Zhou L (2007) Fuel Process Technol 88:807CrossRefGoogle Scholar
  16. 16.
    Zhao X, Wang Y, Shen Q, Yang H, Zhang J (2002) Acta Pet Sin Pet Process Sect 18:47Google Scholar
  17. 17.
    Zhao W, Peng W, Wang D, Zhao N, Li J, Xiao F, Wei W, Sun Y (2009) Catal Commun 10:655CrossRefGoogle Scholar
  18. 18.
    Keuleers R, Desseyn HO, Rousseau B, Van C (1999) J Phys Chem A 103:4621CrossRefGoogle Scholar
  19. 19.
    Meng L, Gong S, He Y (2004) Organic spectra analysis, 2nd edn. Wuhan University Press, Wuhan [in Chinese]Google Scholar
  20. 20.
    Butler AR, Hussain I (1981) J Chem Soc Perkin Trans II:317Google Scholar
  21. 21.
    Solymosi F, Bansagi T (1979) J Phys Chem 83:552CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Hui Wang
    • 1
    • 3
  • Mouhua Wang
    • 2
    • 3
  • Wenbo Zhao
    • 3
  • Wei Wei
    • 3
  • Yuhan Sun
    • 3
  1. 1.Green Chemical Engineering and Energy (GCEE) Research CenterShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanPeople’s Republic of China

Personalised recommendations