Advertisement

Effects of the preparation method and calcination temperature on Cu–Cr–Mg–Al catalysts for the dehydrogenation of cyclohexanol

  • Guoyi Bai
  • Xinxin Fan
  • Hailong Wang
  • Fei He
  • Huisen Ning
Article

Abstract

The activities of the Cu–Cr–Mg–Al catalysts in the dehydrogenation of cyclohexanol to cyclohexanone were correlated with particle sizes and the reducibility of the copper species based on XRD and TPR characterizations. Cu0 was proven to be the active center of the catalysts calcined at low temperatures and some solid solution (MgCu2O3) and spinel (CuAl2O4 or MgAl2O4) were produced when the calcination temperature reached 1,000 °C. The Cu–Cr–Mg–Al catalyst prepared by the co-precipitation method and calcined at 400 °C showed the best activity, with a conversion of 79.7% and a selectivity of 98.6% at 300 °C.

Keywords

Dehydrogenation Cyclohexanol Preparation method Calcination temperature 

Notes

Acknowledgements

The authors thank Professor David Knight for his helpful discussions. Financial support by the National Natural Science Foundation of China (20806018), the Natural Science Foundation of Hebei Province (B2007000156) and the Science Project of the Hebei Education Department (2005350) are gratefully acknowledged.

References

  1. 1.
    Nagaraja BM, Padmasri AH, Seetharamulu P, Reddy KHP, Raju, BD, Rao KSR (2007) J Mol Catal A Chem 278:29CrossRefGoogle Scholar
  2. 2.
    Zheng HY, Zhu YL, Huang L, Zeng ZY, Wan HJ, Li YW (2008) Catal Commun 9:342CrossRefGoogle Scholar
  3. 3.
    Fridman VZ, Davydov AA (2000) J Catal 195:20CrossRefGoogle Scholar
  4. 4.
    Zhu WC, Wang LX, Liu SY, Wang ZL (2008) React Kinet Catal Lett 93:93CrossRefGoogle Scholar
  5. 5.
    Ji DH, Zhu WC, Wang ZL, Wang GJ (2007) Catal Commun 8:1891CrossRefGoogle Scholar
  6. 6.
    Fridman VZ, Davydov AA, Titievsky K (2004) J Catal 222:545CrossRefGoogle Scholar
  7. 7.
    Nagaraja BM, Kumar VS, Shashikala V, Padmasri AH, Reddy SS, Raju BD, Rao KSR (2004) J Mol Catal A Chem 223:339CrossRefGoogle Scholar
  8. 8.
    Bai GY, Wang HL, Ning HS, He F, Chen GF (2008) React Kinet Catal Lett 94:375CrossRefGoogle Scholar
  9. 9.
    Ji DH, Zou XJ, Zheng DF, Wang LX, Liu SY, Zhu WC, Wang GJ, Wang ZL (2008) Pol J Chem 82:1097Google Scholar
  10. 10.
    Ramaswamy V, Malwadkar S, Chilukuri S (2008) Appl Catal B Environ 84:21CrossRefGoogle Scholar
  11. 11.
    Yahiro H, Nakaya K, Yamamoto T, Saiki K, Yamaura H (2006) Catal Commun 7:228CrossRefGoogle Scholar
  12. 12.
    Yang J, Zheng HY, Zhu YL, Zhao GW, Zhang CH, Teng BT, Xiang HW, Li YW (2004) Catal Commun 5:505CrossRefGoogle Scholar
  13. 13.
    Dow WP, Wang YP, Huang TJ (1996) J Catal 160:155CrossRefGoogle Scholar
  14. 14.
    Bai GY, Chen LG, Li Y, Yan XL, He F, Xing P, Zeng T (2004) Appl Catal A Gen 277:253CrossRefGoogle Scholar
  15. 15.
    Bai GY, Li Y, Yan XL, He F, Chen LG (2004) React Kinet Catal Lett 82:33CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Guoyi Bai
    • 1
  • Xinxin Fan
    • 1
  • Hailong Wang
    • 1
  • Fei He
    • 2
  • Huisen Ning
    • 1
  1. 1.College of Chemistry and Environmental ScienceHebei UniversityBaodingPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations