Reaction Kinetics and Catalysis Letters

, Volume 94, Issue 2, pp 199–206 | Cite as

A new optical fiber reactor for the photocatalytic degradation of gaseous organic contaminants

  • Chih Ming Ma
  • Young Ku
  • Wen Wang
  • Fu Tien Jeng


The main objective of this study was to develop a simple, energy-efficient photoreactor for operating at room temperature. In this work, the design of a new gas-phase optical fiber photoreactor (OFP) was introduced which operated under various parameters, such as the UV light intensity and the initial concentration for the photocatalytic decomposition of acetone. Experimental results indicated that increasing the UV light intensity or decreasing the initial concentrations of acetone by a UV/TiO2 process would result in improving the decomposition and mineralization efficiencies. The apparent quantum yield of the novel optical fiber reactor is about 2 to 3 times greater than that of the traditional annular reactor.


Titanium dioxide optical fiber photoreactor quantum yield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Lewandowski, D. F. Ollis: J. Catal., 217, 38 (2003).Google Scholar
  2. 2.
    I.K. Konstantinou, T.A. Albanis: Appl. Catal. B. Environ., 49, 1 (2004).CrossRefGoogle Scholar
  3. 3.
    T.H. Lim, S.D. Kim: Chem. Eng. Proces., 44, 327 (2005).CrossRefGoogle Scholar
  4. 4.
    H. Einaga: React. Kinet. Catal. Lett., 88, 357 (2006).CrossRefGoogle Scholar
  5. 5.
    K. Demeestere, A.D. Visscher, J. Dewulf, M.V. Leeuwen, H.V. Langenhove: Appl. Catal. B. Environ., 54, 261 (2004).CrossRefGoogle Scholar
  6. 6.
    R.G. Changrani, G.B. Raupp: AIChE J., 46, 829 (2000).CrossRefGoogle Scholar
  7. 7.
    E. Sahle-Demessie, S. Bekele, U.R. Pillai: Catal. Today, 88, 61 (2003).CrossRefGoogle Scholar
  8. 8.
    N.J. Peill, M.R. Hoffmann: Environ. Sci. Tech., 30, 2806 (1996).CrossRefGoogle Scholar
  9. 9.
    W. Choi, J.Y. Ko, H. Park, J.S. Chung: Appl. Catal. B. Environ., 31, 209 (2004).CrossRefGoogle Scholar
  10. 10.
    H. Lin, K.T. Valsaraj: J. Appl. Electrochem., 35, 699 (2005).CrossRefGoogle Scholar
  11. 11.
    W. Wang, Y. Ku: Chemosphere, 50, 999 (2003).CrossRefGoogle Scholar
  12. 12.
    W. Wang, Y. Ku, C.M. Ma, F.T. Jeng: J. Appl. Electrochem., 35, 709 (2005).CrossRefGoogle Scholar
  13. 13.
    Y. Ku, C.M. Ma, Y.S. Shen: Appl. Catal. B. Environ., 34, 181 (2001).CrossRefGoogle Scholar
  14. 14.
    A.N. Okte, M.S. Resat, Y. Inel: J. Photoch. Photobiol. A: Chem., 134, 59 (2000).CrossRefGoogle Scholar
  15. 15.
    Y. Ku, K.Y. Tseng, W.Y. Wang: Water, Air, Soil Poll., 168, 313 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Chih Ming Ma
    • 1
  • Young Ku
    • 2
  • Wen Wang
    • 2
  • Fu Tien Jeng
    • 3
  1. 1.Department of Cosmetic Application & ManagementSt. Mary’s Medicine Nursing and Management CollegeYi-lanChina
  2. 2.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipeiChina
  3. 3.Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipeiChina

Personalised recommendations