Reaction Kinetics and Catalysis Letters

, Volume 93, Issue 1, pp 165–173 | Cite as

Insight into phosphine effects on the homogeneous hydrogenation of avermectins to ivermectin catalyzed by in-situ formed rhodium complexes

  • Patricia D. Zgolicz
  • María I. Cabrera
  • Ricardo J. Grau


A kinetic study of the homogeneous catalytic hydrogenation of avermectins is reported for a series of isosteric p-substituted arylphosphines as ligands. The activity of the rhodium complexes formed in situ from [RhCl(COD)]2 increased with increasing the electron-donor capacity of the P(p-XC6H4)3: P(p-ClC6H4)3 < P(C6H5)3 < P(p-CH3C6H4)3 < P(p-OCH3C6H4)3. As expected, this trend was also observed when using preformed complexes thereof. Linear correlations based on Hammett and Kabachnik treatments are provided as useful tools to guide the exploration work towards improved [RhCl(COD)]2/P(p-XC6H4)3 catalytic systems.


Homogeneous hydrogenation rhodium phosphine avermectin ivermectin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (a)
    J.C. Chabala, N. Westfiel, M.H. Fisher, N. Bridgewater: U.S. Patent 4,199,569 (1980), to Merck & Co.Google Scholar
  2. 1. (b)
    W.C. Campbell, M.H. Fisher, E.O. Stapley, G. Albers-Schöberg, T.A. Jacob: Science, 221, 823 (1983).CrossRefGoogle Scholar
  3. 2.
    W.L. Shoop, H. Mrozik, M.H. Fisher: Vet. Parasitol., 59, 139 (1995).CrossRefGoogle Scholar
  4. 3. (a)
    E.W. Cupp, M.J. Bernardo, A.E. Kiszewski, R.C. Collins, H.R. Taylor, M.A. Aziz, B.M. Greene: Science, 231, 740 (1986).CrossRefGoogle Scholar
  5. 2. (b)
    W.C. Campbell: Annu. Rev. Microbiol., 45, 445 (1991).CrossRefGoogle Scholar
  6. 3. (d)
    H.B. Dull: Ann. Trop. Med. Parasitol., 92,(suppl) S67 (1998).Google Scholar
  7. 3. (e)
    R.D. Pearson, in: G.L Mandell, J.E. Bennet, R. Dolin (Eds.). Principles and Practice of Infectious Diseases, pp. 205, 5th ed. Philadelphia: Churchill Livingstone, 2000.Google Scholar
  8. 3. (f)
    J. Victoria: J. Dermatol. Pediatr. Lat, 1, 61 (2003).Google Scholar
  9. 3. (g)
    C.A. Guzzo. C.M. Clineschmidt, G. Schorn, J.M. Reynolds: U.S. Patent 7,064,108 (2006), to Merck & Co.Google Scholar
  10. 4.
    J.C. Chabala, N. Westfiel, M.H. Fisher, N. Bridgewater: U.S. Patent 4,199,569 (1980), to Merck & Co.Google Scholar
  11. 5. (a)
    D. Arlt, G. Bonse, F. Reisewitz: U.S. Patent 5,656,748 (1997) to Bayer.Google Scholar
  12. 5. (b)
    L. Sogli, E. Siviero, A. Rossi, D. Terrasan, E. Bernasconi, P. Terreros, F. Salto: WO 9838201 (1998), to Antibioticos Spa.Google Scholar
  13. 5. (c)
    D. Arlt, G. Bonse: U.S. Patent 6,072,052 (2000), to Bayer.Google Scholar
  14. 6.
    P.D. Zgolicz, M.I. Cabrera, R.J. Grau: Applied Catal. A: General, 283, 99 (2005).CrossRefGoogle Scholar
  15. 7.
    M.I. Cabrera, P.D. Zgolicz, R.J. Grau: Applied Catal. A: General (2007), in press.Google Scholar
  16. 8.
    M.I. Cabrera, P.D. Zgolicz, R.J. Grau: React. Kinet. Catal. Lett. (2007), submitted.Google Scholar
  17. 9.
    R.J. Grau, A.E. Cassano, M.A. Baltanás: Ind. Eng. Chem. Res., 26, 18 (1987).CrossRefGoogle Scholar
  18. 10.
    J. Tiburcio, S. Bernés, H. Torrens: Polyhedron, 25, 1549 (2006).CrossRefGoogle Scholar
  19. 11.
    H.H. Jaffé: Chem. Rev., 53, 191 (1953).CrossRefGoogle Scholar
  20. 12.
    T.A. Mastryukova, M.I. Kabachnik: Russ. Chem. Rev. (Engl. Transl.), 38, 795 (1969).CrossRefGoogle Scholar
  21. 13.
    P.R. Wells: Chem Rev., 63, 171 (1963).CrossRefGoogle Scholar
  22. 13. (b)
    J. March: Organic Chemistry. Reactions, Mechanisms and Structure, pp. 278, 4th Ed., J. Wiley & Sons, New York 1992.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Patricia D. Zgolicz
    • 1
  • María I. Cabrera
    • 1
  • Ricardo J. Grau
    • 1
  1. 1.Instituto de Desarrollo Tecnológico para la Industria QuímicaINTEC (CONICET, U.N.L.)Santa FeArgentina

Personalised recommendations