Advertisement

Reaction Kinetics and Catalysis Letters

, Volume 93, Issue 2, pp 295–303 | Cite as

Chemical catalytic vapor deposition (CCVD) synthesis of carbon nanotubes by decomposition of ethylene on metal (Ni, Co, Fe) nanoparticles

  • Vyacheslav O. Khavrus
  • Nataliia V. Lemesh
  • Svitlana V. Gordijchuk
  • Andriy I. Tripolsky
  • Tetyana S. Ivashchenko
  • Mykola M. Biliy
  • Peter E. Strizhak
Article

Abstract

A simple method for producing unsupported nickel catalyst that can be used to synthesize multi-wall carbon nanotubes (MWNT) has been developed. The yield of purified MWNTs is about 1.8 gmwnt/(gcat×h).

Keywords

Carbon nanotubes chemical vapor deposition electron microscopy Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Robertson: Mater. Today, 7, 46 (2004).CrossRefGoogle Scholar
  2. 2.
    P. Serp, M. Corrias, P. Kalck: Appl. Catal., A, 253, 337 (2003).CrossRefGoogle Scholar
  3. 3.
    J.-M. Nhut, L. Pesant, J.-P. Tessonnier, G. Wine, J. Guille, C. Pham-Huu, M.J. Ledoux: Appl. Catal., A, 254, 345 (2003).CrossRefGoogle Scholar
  4. 4.
    A.-C. Dupuis: Prog. Mater. Sci., 50, 929 (2005).CrossRefGoogle Scholar
  5. 5.
    G. Gulino, R. Vieira, J. Amadou, P. Nguyen, M.J. Ledoux, S. Galvagno, G. Centi, C. Pham-Huu: Appl. Catal. A, 279, 89 (2005).CrossRefGoogle Scholar
  6. 6.
    Ph. Mauron, Ch. Emmenegger, P. Sudan, P. Wenger, S. Rentsch, A. Züttel: Diamond Relat. Mater., 12, 780 (2003).CrossRefGoogle Scholar
  7. 7.
    K.Y. Tran, B. Heinrichs, J.-F. Colomer, J.-P. Pirard, S. Lambert: Appl. Catal., A, 318, 63 (2007).CrossRefGoogle Scholar
  8. 8.
    K. Hernadi, Z. Kónya, A. Siska, J. Kiss, A. Oszkó, J.B. Nagy, I. Kiricsi: Mater. Chem. Phys., 77, 536 (2002).CrossRefGoogle Scholar
  9. 9.
    P.G. Savva, G.G. Olympiou, C.N. Costa, V.A. Ryzhkov, A.M. Efstathiou: Catal. Today, 102–103, 78 (2005).CrossRefGoogle Scholar
  10. 10.
    H. Hesamzadeh, B. Ganjipour, S. Mohajerzadeh, A. Khodadadi, Y. Mortazavi, S. Kiani: Carbon, 42, 1043 (2004).CrossRefGoogle Scholar
  11. 11.
    S. Lim, S.-H. Yoon, Y. Korai, I. Mochida: Carbon, 42, 1765 (2004).CrossRefGoogle Scholar
  12. 12.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Science (Washington, DC, U.S.), 306, 1362 (2004).CrossRefGoogle Scholar
  13. 13.
    A.C. Ferrari, J. Robertson: Phys. Rev. B: Condens. Matter Mater. Phys., 61, 14095 (2000).Google Scholar
  14. 14.
    J. Wei, B. Jiang, X. Zhang, H. Zhu, D. Wu: Chem. Phys. Lett., 376, 753 (2003).CrossRefGoogle Scholar
  15. 15.
    S. Hampel, A. Leonhardt, D. Selbmann, K. Biedermann, D. Elefant, Ch. Müller, T. Gemming, B. Büchner: Carbon, 44, 2316 (2006).CrossRefGoogle Scholar
  16. 16.
    Y. Li, X.B. Zhang, X.Y. Tao, J.M. Xu, W.Z. Huang, J.H. Luo, Z.Q. Luo, T. Li, F. Liu, Y. Bao, H.J. Geise: Carbon, 43, 295 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Vyacheslav O. Khavrus
    • 1
  • Nataliia V. Lemesh
    • 1
  • Svitlana V. Gordijchuk
    • 1
  • Andriy I. Tripolsky
    • 1
  • Tetyana S. Ivashchenko
    • 1
  • Mykola M. Biliy
    • 2
  • Peter E. Strizhak
    • 1
  1. 1.L. V. Pisarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Physics FacultyKyiv Taras Shevchenko UniversityKyivUkraine

Personalised recommendations