Study of the Spectrumof Low-Frequency Current Fluctuations in Filaments of Electric Lamps

We study experimentally the spectral characteristics of low-frequency current fluctuations in tungsten filaments of lighting lamps in the ranges of frequencies 2.5・10−4 – 5・10−1 Hz and temperatures 1260 – 2600 K. To decrease the influence of the edge effects and increase the measurement accuracy, we use subtraction (compensation) of the constant component of the current. Application of special schemes allowed decreasing significantly the influence of the inherent noise of power supplies which are used to feed the lamp filaments. It is found that low-frequency current fluctuations are a randomly time-interleaved aggregate of four random processes: relaxation, pulsed, stepwise, and quasi-continuous ones. We show that relative fluctuations do not exceed 3 ・ 10−4 in the entire range of the studied frequencies, and the frequency dependence of the spectral power density is well approximated by a function having the form 1/fγ and the index γ of the power spectral density within the (1.6 – 1.8) ± 0.2 limits. The dependence of the parameters of the power spectral density of low-frequency current fluctuations on the average value of the current and the volume-average temperature is studied. In our opinion, the revealed features of low-frequency fluctuations are related to the electron, atomic, and degradation processes in lamp filaments.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. S. Ghots, Basics of Description and Computation of Random Process Characteristics in Statistical Radio Physics: Study Guide [in Russian], Bashkir State Univ., Ufa, Russia (2005).

    Google Scholar 

  2. 2.

    J.B. Johnson, Phys. Rev., 26, No. 1, 71–85 (1925).

    ADS  Article  Google Scholar 

  3. 3.

    W. Schottky, Phys. Rev., 28, No. 1, 74–103 (1926).

    ADS  Article  Google Scholar 

  4. 4.

    A. Van der Ziel, Noise. Sources, Characterization, Measurement, Prentice-Hall (1970).

    Google Scholar 

  5. 5.

    A. V. Yakimov, Introduction to Physics of Noise: Study Guide [in Russian], Nizhny Novgorod Univ., Nizhny Novgorod, Russia (2016).

    Google Scholar 

  6. 6.

    G.P. Zhigal’skii, Phys. Usp., 46, No. 5, 449–471 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    F. N. Hooge, Phys. Lett. A, 29, No. 3, 139–140 (1969).

    ADS  Article  Google Scholar 

  8. 8.

    V. B. Orlov and A. V. Yakimov, Physica B: Condensed Matter, 162, No. 1, 13–20 (1990).

    ADS  Article  Google Scholar 

  9. 9.

    A. V. Klyuev, E. I. Shmelev, and A. V. Yakimov, Radiophys. Quantum Electron., 57, No. 12, 891–899 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    S. S. Ghots, Yu.A. Zakharov, and R. Z. Bakhtizin, in: Proc. IV All-Russia Scient. Youth Conf. “Current Problems of Nano- and Microelectronics”, November 29–December 02, 2016, Ufa, Russia [in Russian] (2016), p. 52–53.

    Google Scholar 

  11. 11.

    R.R. Gallyamov, S. S. Ghots and R. Z. Bakhtizin, Radiophys. Quantum Electron., 44, No. 4, 332–338 (2001).

    Article  Google Scholar 

  12. 12.

    S. S. Ghots and R. Z. Bakhtizin, Appl. Surface Sci., 215, Nos. 1–4, 105-112 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    N. W. Ashcroft and N.D. Mermin, Solid State Physics, Cengage Learning (1976).

  14. 14.

    A. V. Yakimov and F. N. Hooge, Physica B: Condensed Matter, 291, Nos. 1–2, 97–104 (2000).

    ADS  Article  Google Scholar 

  15. 15.

    Yu.A. Zakharov, S. S. Gots, and R. Z. Bakhtizin, Measurem. Techniques, No. 4, 358–364 (2019).

    Article  Google Scholar 

  16. 16.

    A. V. Belyakov, A. V. Klyuev and A.V.Yakimov, Radiophys. Quantum Electron., 51, No. 2, 134–144 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    E. I. Afanasyeva and V.M. Skobelev, Light Sources and Start-Control Devices [in Russian], Energoatomizdat, Moscow (1986).

    Google Scholar 

  18. 18.

    S. S. Gots, Basics of Development and Programming of Automated Digital Signal Processing Systems: Study Guide [in Russian], Bashkir State Univ., Ufa (2009).

    Google Scholar 

  19. 19.

    B. Neri, C. Ciofi, and V. Dattilo, IEEE Trans. Electron Devices, 44, No. 9, 1454–1459 (1997).

    ADS  Article  Google Scholar 

  20. 20.

    A. Yakimov and S. R. Forrest, Appl. Phys. Lett., 80, No. 9, 1667–1669 (2002).

    ADS  Article  Google Scholar 

  21. 21.

    Yu.A. Zakharov and S. S. Gots, “RF Certificate of State Registration of Computer Software Program No. 2019667792. PSD Calculation (with Filtering of Power Spectral Density),” No. 2019666742, filed Dec. 16, 2019, reg. Dec. 27, 2019.

  22. 22.

    A. D. Stulova, Measurement Uncertainty. Part 3. Guidelines to Express Measurement Uncertainty [in Russian], Standartinform, Moscow (2012).

    Google Scholar 

  23. 23.

    L. V. Afanasenko, Direct Multiple Metering. Methods of Measurement Results Processing. Foundations [in Russian], Standartinform, Moscow (2013).

    Google Scholar 

  24. 24.

    A. L. Mladentsev and A.V.Yakimov, Radiophys. Quantum Electron., 36, No. 6, 358–360 (1993).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yu.A. Zakharov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 3, pp. 250–265, March 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zakharov, Y., Ghots, S.S. & Bakhtizin, R.Z. Study of the Spectrumof Low-Frequency Current Fluctuations in Filaments of Electric Lamps. Radiophys Quantum El 63, 227–240 (2020).

Download citation