Microwave Observations of Atmospheric Ozone above Nizhny Novgorod in the Winter of 2017–2018

We present the results of the ground-based microwave measurements of evolution of the vertical ozone content in the middle atmosphere above Nizhny Novgorod (56°20' N, 44° E) in the winter of 2017–2018. The results are compared with the satellite-based sensing data obtained using the MLS instrument onboard the Aura satellite and the ERA5 reanalysis data. In particular, the degree of the dependence of the stratospheric-ozone content on the position of the polar-vortex boundary with respect to the observation point at different altitudes is established. It is recorded that in January 2018 the vortex approached the city of Nizhny Novgorod and the boundary of the vortex up to its collapse (February 12), oscillated above the city, so that different altitude levels alternately appeared inside or outside the vortex. Such dynamics of the vortex most noticeably affected the evolution of the stratospheric maximum of the ozone content, whose position followed variation in the vortex boundary and quasiperiodically varied in the altitude range 30–35 km. The results of the ground-based microwave sensing give on the average a lower relative ozone content than the MLS data with a maximum systematic difference of about 0.8 ppm at the altitudes 38–39 km. Nevertheless, we recorded a more distinct response of the ozone content to a change in the structure of the vortex above Nizhny Novgorod than that in the case of using the satellite and reanalysis data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. L. Manney, M. L. Santee, M. Rex, et al., Nature, 478, 469–475 (2011). https://doi.org/10.1038/nature10556

    ADS  Article  Google Scholar 

  2. 2.

    A. S. Garkusha, A.V. Polyakov, Yu.M.Timofeev, et al., Issl. Zemli Kosm., No. 2, 58–64 (2018). https://doi.org/10.7868/S0205961418020069

  3. 3.

    Y.M. Timofeyev, S.P.Smyshlyaev, Y.A.Virolainen, et al., Ann. Geophys., 36, No. 6, 1495–1505 (2018). https://doi.org/10.5194/angeo-36-1495-2018

    ADS  Article  Google Scholar 

  4. 4.

    F. Götz, A.R. Meetham, and G.B. Dobson, Proc. Roy. Soc. Lond. A, 145, No. 855, 416–446 (1934). https://doi.org/10.1098/rspa.1934.0109

    ADS  Article  Google Scholar 

  5. 5.

    I. Petropavlovskikh, P.K.Bhartia, and J. DeLuisi, Geophys. Res. Lett., 32, No. 16, L16808 (2005). https://doi.org/10.1029/2005GL023323

    ADS  Article  Google Scholar 

  6. 6.

    K. Miyagawa, T. Sasaki, H. Nakane, et al., J. Geophys. Res., 114, No. D7, D07108 (2009). https://doi.org/10.1029/2008JD010658

    ADS  Article  Google Scholar 

  7. 7.

    N. S. Pougatchev, B. J. Connor, and C.P.Rinsland, J. Geophys. Res., 100, No. D8, 16689–16697 (1995). https://doi.org/10.1029/95JD01296

    ADS  Article  Google Scholar 

  8. 8.

    N. S. Pougatchev, B. J. Connor, N.B. Jones, et al., Geophys. Res. Lett., 23, No. 13, 1637–1640 1996). https://doi.org/10.1029/96GL01501

    ADS  Article  Google Scholar 

  9. 9.

    H. Nakajima, X. Liu, I. Murata, et al., J. Geophys. Res., 102, No. D25, 29981–29990 (1997). https://doi.org/10.1029/97JD02493

    ADS  Article  Google Scholar 

  10. 10.

    B. Barret, M. De Maziére, and P. Demoulin, J. Geophys. Res., 107, No. D24, 4788 (2002). https://doi.org/10.1029/2001JD001298

    Article  Google Scholar 

  11. 11.

    Ya. Virolainen, Yu.M. Timofeev, A.V. Poberovsky, et al., Izv. Atmos. Ocean. Phys., 51, No. 2, 167–176 (2015). https://doi.org/10.1134/S0001433815020127

    Article  Google Scholar 

  12. 12.

    R.M. Schotland, J. Appl. Meteorol., 13, No. 1, 71–77 (1974).

    Article  Google Scholar 

  13. 13.

    G. Megie, J. Y. Allain, M. L. Chanin, et al., Nature, 270, 329–331 (1977). https://doi.org/10.1038/270329a0

    ADS  Article  Google Scholar 

  14. 14.

    W. M. Caton, W. J. Welch, and S. Silver, J. Geophys. Res., 72, No. 24, 6137–6148 (1967). https://doi.org/10.1029/JZ072i024p06137

    ADS  Article  Google Scholar 

  15. 15.

    W. M. Caton, G. G. Mannella, P.M.Kalaghan, et al., Astrophys. J., 151, No. 3 (2), L153–L156 (1968). https://doi.org/10.1086/180163

  16. 16.

    V. N. Voronov, A. G. Kislyakov, E.P. Kukina, et. al, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 8, No. 1, 29–36 (1972).

    Google Scholar 

  17. 17.

    F. I. Shimabukuro and W. J. Wilson, J. Geophys. Res., 78, No. 27, 6136–6139 (1973). https://doi.org/10.1029/JC078i027p06136

    ADS  Article  Google Scholar 

  18. 18.

    Yu.Yu. Kulikov, E.F. Rizov, and L. I. Fedoseev, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 11, No. 10, 1071–1075 (1975).

    Google Scholar 

  19. 19.

    E.P.Kropotkina, Yu.Yu.Kulikov, V.G.Ryskin, et al., Radiophys. Quantum Electron., 50, Nos. 10–11, 864–869 (2007). https://doi.org/10.1007/s11141-007-0079-8

    ADS  Article  Google Scholar 

  20. 20.

    M. I. Beloglazov, V.M. Demkin, A. A.Krasil’nikov, et al., Geomagn. Aeron., 50, No. 2, 256–262 (2010). https://doi.org/10.1134/S0016793210020131

    ADS  Article  Google Scholar 

  21. 21.

    M.Yu.Kulikov, A.A.Krasil’nikov, A.A. Shvetsov, et al., Radiophys. Quantum Electron., 58, No. 6, 409–417 (2015). https://doi.org/10.1007/s11141-015-9615-0

    ADS  Article  Google Scholar 

  22. 22.

    T. S. Ermakova, S.P. Smyshlyaev, M.Yu.Kulikov, et al., Radiophys. Quantum Electron., 60, No. 8, 640–652 (2018). https://doi.org/10.1007/s11141-018-9833-3

    ADS  Article  Google Scholar 

  23. 23.

    A. A. Krasilnikov, M.Yu.Kulikov, L.M.Kukin, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 699–710 (2013). https://doi.org/10.1007/s11141-014-9467-z

    Article  Google Scholar 

  24. 24.

    A. A. Krasilnikov, M.Yu.Kulikov, L.M.Kukin, et al., Instrum. Exp. Tech., 60, No. 2, 271–273 (2017). https://doi.org/10.1134/S002044121701033X

    Article  Google Scholar 

  25. 25.

    A. A. Krasilnikov, M.Yu.Kulikov, V.G. Ryskin, et al., Instrum. Exp. Tech., 60, No. 5, 701–704 (2017). https://doi.org/10.1134/S0020441217040169

    Article  Google Scholar 

  26. 26.

    S.B. Rozanov, A. S. Zavgorodniy, S.V. Logvinenko, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 638–647 (2012). https://doi.org/10.1007/s11141-012-9325-9

    ADS  Article  Google Scholar 

  27. 27.

    S. Fernandez, A. Murk, and N. Kämpfer, Atmos. Meas. Tech., 8, No. 7, 2649–2662 (2015). https://doi.org/10.5194/amt-8-2649-2015

    Article  Google Scholar 

  28. 28.

    C. D. Rodgers, Rev. Geophys., 14, No. 4, 609–624 (1976). https://doi.org/10.1029/RG014i004p00609

    ADS  Article  Google Scholar 

  29. 29.

    C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, Singapore (2000).

    Google Scholar 

  30. 30.

    V.F.Turchin, V.P. Kozlov, and M. S. Malkevich, Sov. Phys. Usp., 13, No. 6, 681–703 (1971). DOI: https://doi.org/10.1070/PU1971v013n06ABEH004273

    ADS  Article  Google Scholar 

  31. 31.

    V.F. Turchin, Zh. Vych. Mat. Mat. Fiz., 7, 1270–1284 (1967).

    Google Scholar 

  32. 32.

    N. J. Livesey, W. G. Read, P.A.Wagner, et al., Version 4.2x Level 2 Data Quality and Description Document, JPL Tech. Doc., JPL D-33509 Rev. D (2017).

    Google Scholar 

  33. 33.

    T. Ingold, R. Peter, and N. Kämpfer, Radio Sci., 33, No. 4, 905–918 (1998). https://doi.org/10.1029/98RS01000

    ADS  Article  Google Scholar 

  34. 34.

    M. A. Janssen, Atmospheric Remote Sensing by Microwave Radiometry, Wiley, New York (1993).

    Google Scholar 

  35. 35.

    L. Moreira, K. Hocke, and N. Kämpfer, Atmos. Chem. Phys., 17, No. 17, 10259–10268 (2017). https://doi.org/10.5194/acp-17-10259-2017

    ADS  Article  Google Scholar 

  36. 36.

    R. Fletcher, Practical Methods of Optimization, Wiley, New York (1987).

    Google Scholar 

  37. 37.

    https://www.gnu.org/software/gsl

  38. 38.

    S. Chib and E. Greenberg, Am. Stat., 49, No. 4, 327–335 (1995). https://doi.org/10.1080/00031305.1995.10476177

    Article  Google Scholar 

  39. 39.

    C. D. Rodgers, J. Geophys. Res., 95, No. D5, 5587–5595 (1990). https://doi.org/10.1029/JD095iD05p05587

    ADS  Article  Google Scholar 

  40. 40.

    V. S. Kostsov, Int. J. Rem. Sens., 36, No. 11, 2963–2994 (2015). https://doi.org/10.1080/01431161.2015.1054961

    Article  Google Scholar 

  41. 41.

    O. Stähli, A. Murk, N. Kämpfer, et al., Atmos. Meas. Tech., 6, No. 9, 2477–2494 (2013). https://doi.org/10.5194/amt-6-2477-2013

    Article  Google Scholar 

  42. 42.

    M. Schneider, F. Hase, T. Blumenstock, et al., Atmos. Chem. Phys., 8, No. 18, 5579–5588 (2008). https://doi.org/10.5194/acp-8-5579-2008

    ADS  Article  Google Scholar 

  43. 43.

    https://mls.jpl.nasa.gov/data/ak

  44. 44.

    https://cds-espri.ipsl.upmc.fr/espri/pubipsl/mimosauk.jsp

  45. 45.

    A. Hauchecorne, S. Godin, M. Marchand, et al., J. Geophys. Res., 107, No. D20 8289–8301 (2002). https://doi.org/10.1029/2001JD000491

    Article  Google Scholar 

  46. 46.

    https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html

  47. 47.

    https://exp-studies.tor.ec.gc.ca/cgi-bin/selectMap

  48. 48.

    https://gmao.gsfc.nasa.gov/research/science_snapshots/2018/active_winter_SSW.php

  49. 49.

    Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), date of access 02.03.2020. https://cds.climate.copernicus.eu/cdsapp#!/home

  50. 50.

    D. Scheiben, C. Straub, K. Hocke, et al., Atmos. Chem. Phys., 12, No. 12, 7753–7765 (2012). https://doi.org/10.5194/acp-12-7753-2012

    ADS  Article  Google Scholar 

  51. 51.

    F. Schranz, J. Hagen, G. Stober, et al., Atmos. Chem. Phys., 20, No. 18, 10791–10806 (2020). https://doi.org/10.5194/acp-20-10791-2020

    ADS  Article  Google Scholar 

  52. 52.

    G. L. Manney, W. H. Daffer, J. M. Zawodny, et al., J. Geophys. Res., 112, No. D24, D24S50 (2007). https://doi.org/10.1029/2007JD008709

    ADS  Article  Google Scholar 

  53. 53.

    E. R. Nash, P.A.Newman, J. E. Rosenfield, et al., J. Geophys. Res., 101, No. D25, 9471–9478 (1996). https://doi.org/10.1029/96JD00066

    ADS  Article  Google Scholar 

  54. 54.

    Y. Wang, V. Shulga, G. Milinevsky, et al., Atmos. Chem. Phys., 19, No. 15, 10303–10317 (2019). https://doi.org/10.5194/acp-19-10303-2019

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Belikovich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 3, pp. 210–227, March 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belikovich, M.V., Ryskin, V.G., Kulikov, M.Y. et al. Microwave Observations of Atmospheric Ozone above Nizhny Novgorod in the Winter of 2017–2018. Radiophys Quantum El 63, 191–206 (2020). https://doi.org/10.1007/s11141-021-10045-3

Download citation