Regimes of Resonant Interactions of Electrons with Auroral Kilometric Radiation

We analyze the resonant interaction of energetic electrons with auroral kilometric radiation (AKR). Possible regimes of such an interaction are studied on the basis of a numerical solution of the particle motion equations in a given field of a quasi-monochromatic AKR wave packet. It is shown that for realistic wave amplitudes 0.2–0.4 V/m, the interaction can be highly nonlinear. As a result of nonlinear interaction, both a substantial (approximately twofold) acceleration of particles and a decrease in their energy (by about 20–50%) are possible. With realistic plasma and wave packet parameters, electrons with initial energies of the order of 10 keV are accelerated, and for electrons with initial energies of several tens of keV, the interaction leads to a decrease in energy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. A. Benedictov, G. G. Getmantsev, Yu. A. Sazonov, and A. F.Tarasov, Cosmic Res., 3, No. 4, 492–495 (1965).

    Google Scholar 

  2. 2.

    D. A. Gurnett, J. Geophys. Res., 79, 4227–4238 (1974). https://doi.org/10.1029/JA079i028p04227

    Article  Google Scholar 

  3. 3.

    D. A. Gurnett, J. Geomagn. Geoelectr ., 30, No. 3, 257–272 (1978). https://doi.org/10.5636/jgg.30.257

    ADS  Article  Google Scholar 

  4. 4.

    R. F. Benson and W.Calvert, Geophys. Res. Lett ., 6, 479–482 (1979). https://doi.org/10.1029/GL006i006p00479

    ADS  Article  Google Scholar 

  5. 5.

    W.Calvert, Geophys. Res. Lett ., 8, 919–921 (1981). https://doi.org/10.1029/GL008i008p00919

    ADS  Article  Google Scholar 

  6. 6.

    R. Schreiber, J. Geophys. Res. Space Phys., 110, No. A11, A11222 (2005). https://doi.org/10.1029/2004JA010903

    ADS  Article  Google Scholar 

  7. 7.

    M. M. Mogilevsky, T.V.Romantsova, J. Hanasz, et al., JETP Lett ., 86, No. 11, 709–711 (2008). https://doi.org/10.1134/S0021364007230051

    ADS  Article  Google Scholar 

  8. 8.

    C. S. Wu and L. C. Lee, Astrophys. J ., 230, 621–626 (1979). https://doi.org/10.1086/157120

    ADS  Article  Google Scholar 

  9. 9.

    Ya. N. Istomin, O. A. Pokhotelov, and Yu. G. Khabazin, Geomagn. A´eron., 25, No. 2, 272–277 (1985).

    ADS  Google Scholar 

  10. 10.

    P. L. Pritchett, J. Geophys. Res. Space Phys., 89, No. A10, 8957–8970 (1984). https://doi.org/10.1029/JA089iA10p08957

    ADS  Article  Google Scholar 

  11. 11.

    P. L. Pritchett, R. J. Strangeway, R.E.Ergun, and C.W.Carlson, J. Geophys. Res. Space Phys., 107, No. A12, 1437 (2002). https://doi.org/10.1029/2002JA009403

    ADS  Article  Google Scholar 

  12. 12.

    T. M. Burinskaya and J. L.Rauch, Plasma Phys. Rep., 33, No. 1, 28–37 (2007). https://doi.org/10.1134/S1063780X07010047

    ADS  Article  Google Scholar 

  13. 13.

    T. M. Burinskaya and M.M. Shevelev, Plasma Phys. Rep., 42, No. 10, 929–935 (2016). https://doi.org/10.1134/S1063780X16100020

    ADS  Article  Google Scholar 

  14. 14.

    D.A.Gurnett, R. R.Anderson, F. L. Scarf, et al., Space Sci. Rev., 23, No. 1, 103–122 (1979). https://doi.org/10.1007/BF00174114

    ADS  Article  Google Scholar 

  15. 15.

    D.A.Gurnett and R. R.Anderson, in: S. Akasofu and J. Kan, eds., Geophys. Monograph Series, Vol. 25, Physics of Auroral Arc Formation, American Geophysical Union, Washington, D.C. (1981), p. 341–350. https://doi.org/10.1029/GM025p0341

    Google Scholar 

  16. 16.

    A. Morioka, H.Oya, and S.Miyatake, J. Geomagn. Geoelectr ., 33, No. 1, 37–62 (1981). https://doi.org/10.5636/jgg.33.37

    ADS  Article  Google Scholar 

  17. 17.

    J. D. Menietti, A.M.Persoon, J. S.Pickett, and D.A.Gurnett, J. Geophys. Res. Space Phys., 105, 18857–18866 (2000). https://doi.org/10.1029/1999JA000389

    Article  Google Scholar 

  18. 18.

    V. I.Karpman, Y. N. Istomin, and D. R. Shklyar, Plasma Phys., 16, No. 8, 685–703 (1974). https://doi.org/10.1088/0032-1028/16/8/001

    ADS  Article  Google Scholar 

  19. 19.

    J. M. Albert, Phys. Fluids B, 5, 2744–2750 (1993). https://doi.org/10.1063/1.860715

    ADS  Article  Google Scholar 

  20. 20.

    J. M. Albert, J. Geophys. Res. Space Phys., 105, 21191–21209 (2000). https://doi.org/10.1029/2000JA000008

    Article  Google Scholar 

  21. 21.

    A.G.Demekhov, V.Yu.Trakhtengerts, M. J. Rycroft, and D.Nunn, Geomagn. Aeron., 46, No. 6, 711–716 (2006). https://doi.org/10.1134/S0016793206060053

    ADS  Article  Google Scholar 

  22. 22.

    J.M.Albert and J.Bortnik, Geophys. Res. Lett ., 36, No. 12, L12110 (2009). https://doi.org/10.1029/2009GL038904

    ADS  Article  Google Scholar 

  23. 23.

    Y.Kubota and Y.Omura, J. Geophys. Res. Space Phys., 122, No. 1, 293–309 (2017). https://doi.org/10.1002/2016JA023267

    ADS  Article  Google Scholar 

  24. 24.

    V. S.Grach and A.G.Demekhov, Radiophys. Quantum Electron., 60, No. 12, 942–959 (2018). https://doi.org/10.1007/s11141-018-9860-0

    ADS  Article  Google Scholar 

  25. 25.

    K. H. Lee, Y.Omura, and L.C. Lee, Phys. Plasmas, 19, No. 12, 122902 (2012). https://doi.org/10.1063/1.4772059

    ADS  Article  Google Scholar 

  26. 26.

    V. S.Grach and A.G.Demekhov, J. Geophys. Res. Space Phys., 125, No. 2, e2019JA027358 (2020). https://doi.org/10.1029/2019JA027358

    ADS  Article  Google Scholar 

  27. 27.

    B.V. Lundin and D. R. Shklyar, Geomagn. Aeron., 17, No. 2, 168–170 (1977).

    Google Scholar 

  28. 28.

    D. R. Shklyar, in: L. M. Zeleny and I. S. Veselovsky (eds.), Plasma Heliogeophysics [in Russian], Fizmatlit, Moscow (2008), Vol. II, p. 391–490.

    Google Scholar 

  29. 29.

    J. M. Albert, X.Tao, and J. Bortnik, in: D. Summers, I.R.Mann, D. N. Baker, and M. Schulz, eds., Geophys. Monograph Series, Vol. 199, Dynamics of the Earth‘s Radiation Belts and Inner Magnetosphere, American Geophysical Union, Washington, D.C. (2013), p. 255–264. https://doi.org/10.1029/2012gm001324

    Google Scholar 

  30. 30.

    Y. Hobara, V.V.Trakhtengerts, A.G. Demekhov, and M.Hayakawa, J. Geophys. Res. Space Phys., 103, No. 9, 20449–20458 (1998). https://doi.org/10.1029/98JA01746

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Grach.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 3, pp. 173–194, March 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grach, V.S., Demekhov, A. Regimes of Resonant Interactions of Electrons with Auroral Kilometric Radiation. Radiophys Quantum El 63, 157–176 (2020). https://doi.org/10.1007/s11141-021-10043-5

Download citation