Numerical Simulation of Filtration Noise

We numerically simulate filtration noise within the framework of the earlier proposed model for the generation of acoustic noise as a result of excitation of relaxation self-oscillations. The simulation is performed for typical parameters of reservoir rocks. As a result, appearance of the radiation frequencies observed in the experiment is demonstrated. It is also shown that due to the nonlinear interaction between elementary sources of the acoustic radiation, its spectrum is enriched with combination frequencies. In the case where the ratios of the frequencies of the interacting oscillators are fractional, the acoustic interaction can lead to nonlinear synchronization of elementary radiation sources.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. M. McKinly, F. M. Bower, and R. C. Rumble, J. Petrol. Tech., 25, No. 3, SPE-3999-PA (1973). https://doi.org/10.2118/3999-PA.

  2. 2.

    E. F. Afanas’ev, K. L. Grdzelova, and D. V. Plyushchev, Dokl. Akad. Nauk SSSR, 3, 554–557 (1987).

    Google Scholar 

  3. 3.

    S. A. Nikolaev and M. N. Ovchinnikov, Akust. Zh., 38, No. 1, 114–118 (1992).

    Google Scholar 

  4. 4.

    A. I. Ipatov and M. I. Kremenetsky, Geophysical and Hydrodynamic Control of Hydrocarbon Field Development [in Russian], Reg. Khaot. Din. Publ., Moscow–Izhevsk (2010).

  5. 5.

    E. A. Marfin, Well Noise Logging and Vibroacoustic Treatment of Fluid-Saturated Formations [in Russian], Kazan (Volga Region) Federal Univ., Kazan (2012).

  6. 6.

    E. A. Marfin, I. S. Metelev, B. A. Garif’anov, and A. A. Abdrashitov, Uchen. Zap. Fiz. Fakult. Kazan Univ., 6, 146316 (2014).

    Google Scholar 

  7. 7.

    G. B. Pykhachev and R. G. Isaev, Underground Hydraulics [in Russian], Nedra, Moscow (1973).

    Google Scholar 

  8. 8.

    V. N. Shchelkachev and B. B. Lapuk, Underground Hydraulics, Reg. Khaot. Din. Publ., Moscow–Izhevsk (2001).

  9. 9.

    L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

  10. 10.

    L. D. Landau and E. M. Lifshitz, Fluid Mechanics [in Russian], Butterworth-Heinemann, Oxford (1987).

    Google Scholar 

  11. 11.

    K. R. Fritz, C.-C. Hantschk, S. Heim, et al., in: G. Müller and M. Möser, eds., Handbook of Engineering Acoustics, Springer-Verlag, Berlin–Heidelberg (2013), p. 577-636.

  12. 12.

    G. Mavko, T. Mukeji and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge Univ. Press, Cambridge (2009).

  13. 13.

    G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Motion of Fluids and Gases in Natural Formations [in Russian], Nedra, Moscow (1984).

    Google Scholar 

  14. 14.

    S. I. Sergeev, N. I. Ryzhikov, and D. N.Mikhailov, J. Petrol. Sci. Eng., 172, 654–661 (2019). https://doi.org/10.1016/j.petrol.2018.08.018.

    Article  Google Scholar 

  15. 15.

    Yu. M. Zaslavsky, Tekh. Akust., 5, 48–58 (2005).

    Google Scholar 

  16. 16.

    A. Kh. Mirzadzhanzade, M. M. Khasanov, and R. N. Bakhtizin, Simulation of Oil and Gas Production. Nonlinearity, Nonequilibrium, and Uncertainty [in Russian], Computer Research Inst., Moscow–Izhevsk (2004).

  17. 17.

    M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems, Kluwer, Dordrecht (1989).

  18. 18.

    D. Mikhailov and S. Sergeev, Water Resources Res., 55, No. 5, 4220–4232 (2019). https://doi.org/10.1029/2018WR024168.

    ADS  Article  Google Scholar 

  19. 19.

    A. V. Lebedev, Radiophys. Quantum Electron., 61, No. 4, 305–317 (2018). https://doi.org/10.1007/s11141-018-9892-5.

    ADS  Article  Google Scholar 

  20. 20.

    A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators, Pergamon Press, Oxford (1966).

  21. 21.

    M. A. Isakovich, General Acoustics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  22. 22.

    M. Sahimi, Applications of Percolation Theory, Taylor and Francis, London (1994).

    Google Scholar 

  23. 23.

    M. Klaman and O. D. Lavrentovich, Soft Matter: An Introduction (Partially Ordered Media), Springer-Verlag, New York (2003).

  24. 24.

    J. Dvorkin and A. Nur, Geophysics, 58, No. 4, 524–533 (1993). https://doi.org/10.1190/1.1443435.

    ADS  Article  Google Scholar 

  25. 25.

    J. Dvorkin, R. Nolen-Hoeksema, and A. Nur, Geophysics, 59, No. 3, 428–438 (1994). https://doi.org/10.1190/1.1443605.

    ADS  Article  Google Scholar 

  26. 26.

    A. V. Lebedev and L. A.Ostrovsky, Acoust. Phys., 60, No. 5, 555–561 (2014). https://doi.org/10.1134/S1063771014050066.

    ADS  Article  Google Scholar 

  27. 27.

    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 31, No. 2, 99–101 (1941).

    Google Scholar 

  28. 28.

    L. A. Ostrovsky and P. A. Johnson, Rivista Nuovo Cim., 24, Ser. 4, No. 7, 1–46 (2001).

  29. 29.

    R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: the Complex Behaviour of Rocks, Soil, Concrete, Wiley-VCH, Wenheim (2009).

  30. 30.

    E. Skudrzyk, Simple and Complex Vibratory Systems, The Pennsylvania State Univ. Press, University Park, Pa. (1968).

    Google Scholar 

  31. 31.

    N. P. Chrotiros, Acoustics of the Seabed as a Poroelastic Medium, Springer, New York (2017).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 2, pp. 155–171, February 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V. Numerical Simulation of Filtration Noise. Radiophys Quantum El 63, 142–156 (2020). https://doi.org/10.1007/s11141-020-10042-y

Download citation