Skip to main content
Log in

Impact of the Space Charge Distribution in the Model Source of Quasi-Electrostatic Whistler-Mode Waves on the Effective Length of a Short Receiving Antenna

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In our previous paper [1] it was shown, using the theory of antennas in plasmas, that the effective length leff of a receiving dipole antenna can be much larger than its geometric length in case quasielectrostatic chorus emissions propagating close to the resonance cone are received. In order to simplify calculations of leff, it was proposed to use a model (“effective”) source of such emissions because taking into account all of the real source properties (that are determined by the nonlinear processes of interaction between waves and charged particles in a wide region of space) would lead to unreasonably cumbersome calculations. The present paper analyzes how the effective length of the spacecraft-borne receiving antenna depends on the parameters of the space charge distribution in the model source of quasi-electrostatic chorus emissions. It is found that the length leff decreases as a power function (with exponent −1/2) with increasing distance (along the group velocity resonance cone) between the model source and the receiving antenna. This relationship is correct up to the distance at which the effective length becomes of the order of the geometric length. At longer distances, the radiation field loses its resonance nature because of the excitation of an electromagnetic (quasi-longitudinal) wave. It is shown that under conditions of the Earth’s magnetosphere, the approximation we used can remain valid up to distances of the order of the geomagnetic field line length, which confirms the importance of the discussed effect for correct interpretation of the electric wave measurement data in the whistler-mode frequency range. It is also shown that the length leff changes by less than 10% when the characteristic scale of spectrum of the charge distribution along the model source varies as Δ ∼ (0.1–1.0) kobs, where the wave number kobs corresponds to the observed spectral maximum of radiation at a given frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Shirokov, A.G. Demekhov, Yu.V.Chugunov, and A.V. Larchenko, Radio Sci., 52, No. 7, 884 (2017).

    Article  ADS  Google Scholar 

  2. G. A. Morin and K. G. Balmain, Radio Sci., 28, No. 2, 151 (1993).

    Article  ADS  Google Scholar 

  3. M. Tsutsui, I. Nagano, H. Kojima, et al., Radio Sci., 32, No. 3, 1101 (1997).

    Article  ADS  Google Scholar 

  4. Yu. V. Chugunov, Radiophys. Quantum Electron., 44, Nos. 1–2, 151 (2001).

    Article  Google Scholar 

  5. Y. V. Chugunov, E. A. Mareev, V. Fiala, and H. G. James, Radio Sci., 38, No. 2, 1022 (2003).

    Article  ADS  Google Scholar 

  6. Y.V. Chugunov and V. Fiala, IEEE Trans. Antennas Propag., 54, No. 10, 2750 (2006).

    Article  ADS  Google Scholar 

  7. Y. V. Chugunov, V. Fiala, M. Hayosh, and H. G. James, Radio Sci., 47, No. 6, RS6002 (2012).

    Article  ADS  Google Scholar 

  8. Yu.V. Chugunov and E.A. Shirokov, Cosmic Res., 54, No. 3, 198 (2016).

    Article  ADS  Google Scholar 

  9. C. A. Balanis, Antenna Theory: Analysis and Design, 4th edition, Wiley, Hoboken (2016).

    Google Scholar 

  10. E.A. Mareev and Yu. V. Chugunov, Antennas in Plasmas [in Russian], Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novgorod (1991).

  11. A.A. Andronov and Yu.V. Chugunov, Sov. Phys. Usp., 18, No. 5, 343 (1975).

    Article  ADS  Google Scholar 

  12. W.C. Chew, J.-M. Jin, E. Michielssen, and J. Song., eds., Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood (2001).

  13. Yu.V. Chugunov, Radiophys. Quantum Electron., 11, No. 12, 1033 (1968).

    Article  ADS  Google Scholar 

  14. Yu.V. Chugunov, E. A. Shirokov, and I.A. Fomina, Radiophys. Quantum Electron., 58, No. 5, 318 (2015).

    Article  ADS  Google Scholar 

  15. R. A. Helliwell, Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford (1965).

  16. V. Y. Trakhtengerts, J. Geophys. Res. Space Phys., 100, No. A9, 17205 (1999).

    Article  ADS  Google Scholar 

  17. V. Y. Trakhtengerts, Ann. Geophys., 17, No. 1, 95 (1998).

    Article  ADS  Google Scholar 

  18. Y. Omura, Y. Katoh, and D. Summers, J. Geophys. Res. Space Phys., 113, No. A4, A04223 (2008).

    Article  ADS  Google Scholar 

  19. A. G. Demekhov, U. Taubenschuss, and O. Santolík, J. Geophys. Res. Space Phys., 122, No. 1, 166 (2017).

    Article  ADS  Google Scholar 

  20. M.V. Fedoryuk, The Saddle-Point Method [in Russian], Librocom, Moscow (2010).

  21. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).

    Google Scholar 

  22. T. H. Stix, Waves in Plasmas, Springer-Verlag, New York (1992).

  23. O. Santolík, M. Parrot, and F. Lefeuvre, Radio Sci., 38, No. 1, 1010 (2003).

    Article  ADS  Google Scholar 

  24. J. L. Burch and V. Angelopoulos, eds., The THEMIS Mission, Springer-Verlag, New York (2009).

    Google Scholar 

  25. O. V. Agapitov, A.V.Artemyev, D. Mourenas, et al., J. Geophys. Res. Space Phys., 119, No. 3, 1606 (2014).

    Article  ADS  Google Scholar 

  26. A. Roux, O. L. Contel, C. Coillot, et al., Space Sci. Rev., 141, Nos. 1–4, 265 (2008).

  27. J. W. Bonnell, F. S. Mozer, G.T. Delory, et al., Space Sci. Rev., 141, Nos. 1–4, 303 (2008).

    Article  ADS  Google Scholar 

  28. H. U. Auster, K.H.Glassmeier, W. Magnes, et al., Space Sci. Rev., 141, Nos. 1–4, 235 (2008).

    Article  ADS  Google Scholar 

  29. E.A.Mareev and Yu.V. Chugunov, Radiophys. Quantum Electron., 30, No. 8, 713 (1987).

    Article  ADS  Google Scholar 

  30. H. G. James, in: Lecture Notes in Physics, Vol. 687, Geospace Electromagnetic Waves and Radiation, Springer, Berlin (2006), p. 191.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.A. Shirokov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 2, pp. 136–146, February 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, E., Demekhov, A.G. Impact of the Space Charge Distribution in the Model Source of Quasi-Electrostatic Whistler-Mode Waves on the Effective Length of a Short Receiving Antenna. Radiophys Quantum El 62, 123–132 (2019). https://doi.org/10.1007/s11141-019-09960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09960-3

Navigation