Skip to main content
Log in

Nonlinear Dynamics of an Antiferromagnetic Spintronic Oscillator

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study nonlinear dynamics of the spintronic nanosized antiferromagnetic terahertz oscillator consisting of an antiferromagnetic layer with easy-plane anisotropy (hematite) and a normal-metal (platinum) layer. Normal oscillation frequencies, namely, ferromagnetic and antiferromagnetic (terahertz) ones, are found. Their dependence on the value of a static magnetic field parallel to the sample plane is obtained. An approximate mathematical model in the form of the equations for the Néel-vector rotation angle in the azimuthal plane is developed for describing the oscillator dynamics. The adjustment characteristic, i.e., the dependence of the antiferromagnetic-mode frequency on the value of the direct current flowing in the platinum layer is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Sirtori, Nature, 417, 132 (2002).

    Article  ADS  Google Scholar 

  2. R. Kleiner, Science, 318, No. 5854, 1254 (2007).

    Article  Google Scholar 

  3. E. A. Nanni, W.R.Huang, K.-H. Hong, et al., Nat. Commun., 6, No. 8486, 1 (2015).

    Google Scholar 

  4. H.-W. Hubers, Nat. Photon., 4, 503 (2010).

    Article  ADS  Google Scholar 

  5. L. Ozyuzer, A. E. Koshelev, C. Kurter, et al., Science, 318, No. 5854, 1291 (2007).

    Article  ADS  Google Scholar 

  6. M. Tonouchi, Nat. Photon., 1, 97 (2007).

    Article  ADS  Google Scholar 

  7. Yu.V.Gulyaev, P. E. Zilberman, G. M. Mikhailov, and S.G.Chigarev, JETP Lett., 98, No. 11, 742 (2013).

    Article  ADS  Google Scholar 

  8. A. M. Kalashnikova, A.V.Kimel, and R. V. Pisarev, Physics—Uspekhi, 58, No. 2, 969 (2015).

    ADS  Google Scholar 

  9. T. Jungwirth, X. Marti, P. Wadley, et al., Nat. Nanotech., 11, 231 (2016).

    Article  ADS  Google Scholar 

  10. E.V.Gomonay and V.M. Loktev, Low Temp. Phys., 40, No. 1, 17 (2014).

    Article  ADS  Google Scholar 

  11. V. Baltz, A. Manchon, M. Tsoi, et al., Rev. Mod. Phys., 90, No. 1, 015005 (2018).

    Article  ADS  Google Scholar 

  12. O. Johansen, H. Skarsvag, and A. Brataas, Phys. Rev. B, 97, No. 5, 054423 (2018).

    Article  ADS  Google Scholar 

  13. R. Khymyn, I. Lisenkov, V. Tiberkevich, et al., Sci. Rep., 7, 43705 (2017).

    Article  ADS  Google Scholar 

  14. R. Cheng, J. Xiao, Q. Niu, et al., Phys. Rev. Lett., 113, No. 5, 057601 (2014).

    Article  ADS  Google Scholar 

  15. R. Cheng, J. Xiao, and A. Brataas, Phys. Rev. Lett., 116, No. 20, 207603 (2016).

    Article  ADS  Google Scholar 

  16. O. Sulymenko, O. Prokopenko, V. Tiberkevich, et al., Phys. Rev. Appl., 8, No. 6, 064007 (2017).

    Article  ADS  Google Scholar 

  17. T. Jungwirth, J. Wunderlich, and K. Olejnik, Nat. Mat., 11, 382 (2012).

    Article  Google Scholar 

  18. T. Moriya, Phys. Rev., 120, No. 1, 91 (1960).

    Article  ADS  Google Scholar 

  19. I.E. Dzialoshinskii, Sov. Phys. JETP, 5, No. 6, 1259 (1957).

    Google Scholar 

  20. P. W. Anderson, F.R.Merritt, J.P.Remeika, et al., Phys. Rev., 93, No. 4, 717 (1954).

    Article  ADS  Google Scholar 

  21. H. Kumagai, H. Abe, K. Ôno, et al., Phys. Rev., 99, No. 4, 1116 (1955).

    Article  ADS  Google Scholar 

  22. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, et al., Symmetry and Physical Properties of Antiferromagnets [in Russian], Fizmatlit, Moscow (2001).

  23. L. V. Velikov and E.G.Rudashevskii, Sov. Phys. JETP, 29, No. 5, 836 (1969).

    ADS  Google Scholar 

  24. V. I. Ozhogin and V.G. Shapiro, Sov. Phys. JETP, 28, No. 5, 915 (1969).

    ADS  Google Scholar 

  25. M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems Kluwer, Dordrecht (1989).

  26. K.K. Likharev, Introduction to the Dynamics of Josephson Junctions [in Russian], Nauka, Moscow (1985).

  27. M. V. Kapranov, V. N. Kuleshov, and G.M.Utkin, Theory of Oscillations in Radio Engineering [in Russian], Nauka, Moscow (1984).

  28. N. N. Bogolyubov and Yu. A. Mitropol’sky, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Fizmatlit, Moscow (1963).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Safin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 11, pp. 937–944, November 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safin, A.R., Nikitov, S.A. Nonlinear Dynamics of an Antiferromagnetic Spintronic Oscillator. Radiophys Quantum El 61, 834–840 (2019). https://doi.org/10.1007/s11141-019-09940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09940-7

Navigation