Skip to main content
Log in

Spectral-Dynamical Peculiarities of Polarization of the Active Medium and Space-Time Empirical Modes of a Laser with a Low-Q Cavity

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We have found a set of correlation effects, which are due to the inherent dynamics of the spectral density of polarization of an active medium with strong inhomogeneous broadening of the working transition line and occur if the rate of incoherent relaxation of optical dipole oscillations of the active centers is lower than the rate of optical-field attenuation in the laser cavity. Our analysis is based on the numerical studies of the stationary superradiant laser generation during continuous pumping with self-locking of some of the quasistationary modes. For the purposes of studying the detected effects, the methods of comparative analysis of the dynamic spectra of polarization and the field have been developed. In these methods, the time-frequency and space-time empirical modes of the spectra are used, which are determined by orthogonal eigenfunctions of special correlation matrices. The interconnection of the superradiance phenomena and mode self-locking in the considered class of lasers with low-Q cavities is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Khanin, Fundamentals of Laser Dynamics, Cambridge Int. Sci. Publ. Ltd., Cambridge (2006).

  2. F.T. Arecchi and R.G.Harrison, Instabilities and Chaos in Quantum Optics, Springer, London (2011).

    Google Scholar 

  3. A. E. Siegman, Lasers, Univ. Science Books, Mill Valley, CA (1986).

  4. L. Lugiato, F. Prati, and M. Brambilla, Nonlinear Optical Systems, Cambridge Univ. Press (2015).

  5. C. O. Weiss, Instabilities and Chaos in Quantum Optics II, Plenum Press, New York (1988).

    Google Scholar 

  6. E. Roldan, G. J. de Varcarcel, F. Prati, et al., in: Trends in Spatiotemporal Dynamics in Laser. Instabilities, Polarization Dynamics, and Spatial Structures, Research Signpost, Trivandrum, (2005), p. 1.

  7. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press (1995).

  8. Vl. V. Kocharovsky, A. A. Belyanin, E.R.Kocharovskaya, and V.V.Kocharovsky, in: Advanced Lasers: Laser Physics and Technology for Applied and Fundamental Science, Springer Ser. in Optical Sciences, 193, 49 (2015).

  9. A. A. Belyanin, V. V. Kocharovsky, and Vl. V. Kocharovsky, Quantum Semiclass. Opt. (J. Eur. Opt. Soc. B), 9, No. 1, 1 (1997).

    Article  ADS  Google Scholar 

  10. D. Scherrer and F. Kneubehl, Infrared Phys., 34, 227 (1993).

    Article  ADS  Google Scholar 

  11. A. Kumarakrishnan and X. L. Han, Phys. Rev. A, 58, 4153 (1998).

    Article  ADS  Google Scholar 

  12. A. Kumarakrishnan, S. Chudasama, and X. J. Han, Opt. Soc. Am. B, 22, 1538 (2005).

    Article  ADS  Google Scholar 

  13. J. A. Greenberg and D. J. Gauthier, Phys. Rev. A, 86, 013823 (2012).

    Article  ADS  Google Scholar 

  14. J. G. Bohnet, Z. Chen, J.M.Weiner, et al., Nature, 484, 78 (2012).

    Article  ADS  Google Scholar 

  15. J.M.Weiner, K.C.Cox, J.G.Bohnet, and J.K.Thompson, Phys. Rev. A, 95, 033808 (2017).

    Article  ADS  Google Scholar 

  16. M. A. Norcia and J.K.Thompson, Phys. Rev. X, 6, 011025 (2016).

    Google Scholar 

  17. M. A. Norcia, M.N.Winchester, J. R.K.Cline, and J.K.Thompson, Sci. Adv., 2, e1601231 (2016).

    Article  ADS  Google Scholar 

  18. T. S. Mansuripur, C. Vernet, P. Chevalier, et al., Phys. Rev. A, 94, 063807 (2016).

    Article  ADS  Google Scholar 

  19. N. N. Vukovic, J. Radovanovic, V. Milanovic, and D. L. Boiko, IEEE J. Sel. Top. Quantum Electron., 23, 1200616 (2017).

    Article  Google Scholar 

  20. N. Vukovic, J. Radovanovic, V. Milanovic, and D. L. Boiko, Opt. Express, 24, 26911 (2016).

    Article  ADS  Google Scholar 

  21. M. Scheibner, T. Schmidt, L. Worschech, et al., Nature Physics, 3, 106 (2007).

    Article  ADS  Google Scholar 

  22. D. C. Dai and A.P.Monkman, Phys. Rev. B, 84, 115206 (2011).

    Article  ADS  Google Scholar 

  23. C. R. Ding, Z. L. Li, Z. R. Qiu, et al., Appl. Phys. Lett., 101, 091115 (2012).

    Article  ADS  Google Scholar 

  24. G. Pozina, M.A.Kaliteevski, E. V. Nikitina, et al., Sci. Rep., 5, 14911 (2015).

    Article  ADS  Google Scholar 

  25. G. Pozina, M.A.Kaliteevski, E. V. Nikitina, et al., Phys. Status Solidi B, 254, 1600402 (2017).

    Article  ADS  Google Scholar 

  26. Y. D. Jho, X. Wang, J. Kono, et al., Phys. Rev. Lett., 96, 237401 (2006).

    Article  ADS  Google Scholar 

  27. Y. D. Jho, X. Wang, D.H.Reitze, et al., Phys. Rev. B, 81, 155314 (2010).

    Article  ADS  Google Scholar 

  28. K. Cong, Y. Wang, J.-H.Kim, et al., Phys. Rev. B, 91, 235448 (2015).

    Article  ADS  Google Scholar 

  29. G.T. Noe (II), J.-H.Kim, J. Lee, et al., Nature Phys., 8, 219 (2012).

  30. G.T. Noe (II), J.-H.Kim, J. Lee, et al., Fortschr. Phys., 61, 393 (2013).

  31. J.-H.Kim, G.T.Noe (II), S.A.McGill, et al., Sci. Rep., 3, 3283 (2013).

  32. R. Florian, L. Schwan, and D. Schmid, Phys. Rev. A, 29, 2709 (1984).

    Article  ADS  Google Scholar 

  33. M. S. Malcuit, J. J. Maki, D. J. Simkin, and R.W.Boyd, Phys. Rev. Lett., 59. 1189 (1987).

    Article  ADS  Google Scholar 

  34. O.P.Varnavskii, A. N. Kirkin, A.M. Leontovich, et al., J. Exp. Theor. Phys., 59, 716 (1984).

    Google Scholar 

  35. K. Miyajima, Y. Kagotani, S. Saito, et al., J. Phys. Condens. Matter., 21, 195802 (2009).

    Article  ADS  Google Scholar 

  36. K. Miyajima, K. Maeno, S. Saito, et al., Phys. Status Solidi C, 8, 209 (2011).

    Article  ADS  Google Scholar 

  37. L. Phuong, K. Miyajima, K. Maeno, et al., J. Lumin., 133, 77 (2013).

    Article  Google Scholar 

  38. P. Tighineanu, R. S. Daveau, T. B. Lehmann, et al., Phys. Rev. Lett., 116, 163604 (2016).

    Article  ADS  Google Scholar 

  39. F. Meinardi, M. Cerminara, A. Sassella, et al., Phys. Rev. Lett., 91, 247401 (2003).

    Article  ADS  Google Scholar 

  40. G. Lanzani, The Photophysics behind Photovoltaics and Photonics, John Wiley & Sons, New York (2012), p. 47.

    Book  Google Scholar 

  41. D. H. Arias, K. W. Stone, S. M. Vlaming, et al., J. Phys. Chem. B, 117, 4553 (2013).

    Article  Google Scholar 

  42. G. M. Akselrod, E.R.Young, K.W. Stone, et al., Phys. Rev. B, 90, 035209 (2014).

    Article  ADS  Google Scholar 

  43. S.-H. Lim, T.G.Bjorklund, F. C. Spano, and C. J. Bardeen, Phys. Rev. Lett., 92, 107402 (2004).

    Article  ADS  Google Scholar 

  44. V. V. Kocharovsky, V. V. Zheleznyakov, E.R.Kocharovskaya, and V.V.Kocharovsky, Phys. Usp., 60, 345 (2017).

    Article  ADS  Google Scholar 

  45. C.O.Weiss, R. Vilasecar, N. B. Abraham, et al., Appl. Phys. B, 61, 223 (1995).

    Article  ADS  Google Scholar 

  46. P. Chenkosol and L.W. Casperson, J. Opt. Soc. Am. B, 24, 1199 (2007).

    Article  ADS  Google Scholar 

  47. P. Chenkosol and L.W. Casperson, J. Opt. Soc. Am. B, 20, 2539 (2003).

    Article  ADS  Google Scholar 

  48. M. Tarroja, H. Fe, M. Sharafi, and L.W.Casperson, J. Opt. Soc. Am. B, 6, 1564 (1989).

    Article  ADS  Google Scholar 

  49. J. L. Font, R. Vilaseca, F. Prati, and E. Roldan, Opt. Commun., 261, 336 (2006).

    Article  ADS  Google Scholar 

  50. J. Jahanpanah and H. R. Eslami, Opt. Commun., 293, 102 (2013).

    Article  ADS  Google Scholar 

  51. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover Books on Physics), Dover Publ. (1987).

  52. R. H. Pantell and H.E. Puthoff, Fundamentals of Quantum Electronics Wiley, New York (1969).

  53. Vl. V. Kocharovsky, P. A. Kalinin, E. R. Kocharovskaya, and V. V. Kocharovsky, in: Nonlinear Waves 2012 [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2013), p. 398.

  54. A. A. Kharkevich, Spectra and Analysis [in Russian], Librokom, Moscow (2009).

  55. S.A.Akhmanov, Yu. E. Dyakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics [in Russian], Nauka, Moscow (1981).

  56. Vl. V. Kocharovsky, M. A. Garasyov, P. A. Kalinin, and E. R. Kocharovskaya, in: Proc. II Symp. on Coherent Optical Radiation of Semiconductor Compounds and Structures, November 16–18, 2009, Moscow–Zvenigorod, p. 68.

  57. I. L. Krestnikov, N.N. Ledentsov, A. Hofmann, and D. Bimberg, Phys. Stat. Sol. A, 183, 207 (2001).

    Article  ADS  Google Scholar 

  58. P. Qiao, C.-Y. Lu, D. Bimberg, and S. L. Chuang, Optics Express, 21, 30336 (2013).

    Article  ADS  Google Scholar 

  59. H. Kogelnik and C.V. Shank, J. Appl. Phys., 43, No. 5, 2327 (1972).

    Article  ADS  Google Scholar 

  60. D. C. Flanders, H. Kogelnik, C.V. Shank, and R.D. Stanley, Appl. Phys. Lett., 25, 651 (1974).

    Article  ADS  Google Scholar 

  61. L. Zhu, A. Scherer, and A. Yariv, IEEE J. Quantum Electron., 43, 934 (2007).

    Article  ADS  Google Scholar 

  62. A. Mock, L. Lu, E. Y. Hwang, et al., IEEE J. Sel. Top. Quantum Electron., 15, 892 (2009).

    Article  ADS  Google Scholar 

  63. S. Akiba, Encyclopedic Handbook of Integrated Optics, CRC Press-Taylor & Francis Group, Boca Raton (2005), p. 41.

    Google Scholar 

  64. S.K.Turitsyn, S.A.Babin, D.V.Churkin, et al., Physics Reports, 542, 133 (2014).

    Article  ADS  Google Scholar 

  65. S. Wang, IEEE J. Quantum Electron., 10, 413 (1974).

    Article  ADS  Google Scholar 

  66. E. R. Kocharovskaya, N. S. Ginzburg, A. S. Sergeev, et al., Radiophys. Quantum Electron., 59, No. 6, 484 (2016).

    Article  ADS  Google Scholar 

  67. V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, Phys. Usp., 32, No. 10, 835 (1989).

    Article  ADS  Google Scholar 

  68. V. V. Kocharovsky, Vl. V. Kocharovsky, and E.R.Golubyatnikova, Computers Math. Applic., 34, 773 (1997).

  69. P. A. Kalinin, V.V.Kocharovsky, and Vl. V. Kocharovsky, Semiconductors, 46, No. 11, 1351 (2012).

    Article  ADS  Google Scholar 

  70. E. R. Kocharovskaya, N. S. Ginzburg, and A. S. Sergeev, Quantum Electron., 41, 722 (2011).

    Article  ADS  Google Scholar 

  71. N. S. Ginzburg, E.R.Kocharovskaya, and A. S. Sergeev, Bull. Rus. Acad. Sci. Phys., 72, 26 (2008).

    Google Scholar 

  72. N. S. Ginzburg, E.R.Kocharovskaya, and A. S. Sergeev, Bull. Rus. Acad. Sci. Phys., 74, 04 (2010).

    Google Scholar 

  73. A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhny, et al., Semiconductors, 52, 53 (2018).

    Article  ADS  Google Scholar 

  74. A. Yariv and P. Yeh, Optical Waves and Crystals: Propagation and Control of Laser Radiation, Wiley, New York (2003).

  75. V. V. Kocharovsky and Vl. V. Kocharovsky, Radiophys. Quantum Electron., 44, Nos. 5–6, 443 (2001).

  76. R. M. Arkhipov, M.V.Arkhipov, and I.V.Babushkin, JETP Lett., 101, No. 3, 149 (2015).

    Article  ADS  Google Scholar 

  77. M. V. Arkhipov, R.M.Arkhipov, A. A. Shimko, and I.V.Babushkin, JETP Lett., 101, No. 4, 32 (2015).

    Article  Google Scholar 

  78. R.M.Arkhipov, M.V.Arkhipov, and I.V.Babushkin, Optics Commun., 361, 73 (2016).

    Article  ADS  Google Scholar 

  79. I. Jollife, Principal Component Analysis, Springer, New York (1986).

    Book  Google Scholar 

  80. A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions for Climate Data Analysis, Springer Science+Business Media B. V., Dordrecht (2010).

  81. D. Mukhin, D. Kondrashov, E. Loskutov, et al., J. Climate, 28, 1962 (2015).

    Article  ADS  Google Scholar 

  82. A. Hannachi, I.T. Jolliffe, and D.B. Stephenson, Int. J. Climatol., 27, 1119 (2007).

    Article  Google Scholar 

  83. J. D. Horel, J. Climate Appl. Meteor., 23, 1660 (1984).

    Article  ADS  Google Scholar 

  84. M. Ghil, M. R. Allen, M. D. Dettinger, et al., Rev. Geophys., 40, 3-1-3-41 (2002).

    Article  Google Scholar 

  85. G. Plaut and R. Vautard, J. Atmos. Sci., 51, 210 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Kocharovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 11, pp. 906–936, November 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharovskaya, E.P., Gavrilov, A.S., Kocharovsky, V.V. et al. Spectral-Dynamical Peculiarities of Polarization of the Active Medium and Space-Time Empirical Modes of a Laser with a Low-Q Cavity. Radiophys Quantum El 61, 806–833 (2019). https://doi.org/10.1007/s11141-019-09939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09939-0

Navigation