Skip to main content
Log in

Millimeter-Wave Gyrotron System for Research and Application Development. Part 2. High-Temperature Processes in Polycrystalline Dielectric Materials

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Gyrotron systems operated at frequencies of 24 to 30 GHz with an output power of 3 to 15 kW have been used at the Institute of Applied Physics of the Russian Academy of Sciences for more than 20 years for the studies of high-temperature processes in polycrystalline dielectric materials under intense electromagnetic irradiation. The research has mostly been focused on the study of the physically specific features of diffusive mass transfer in solids and on the possible use of these features for applications. A distinguishing feature of the studied processes is a significant enhancement of their rates compared to similar processes performed with the use of conventional heating methods. Examples of enhanced sintering of a broad range of ceramic materials, including optical and laser ceramics and composition-graded metal–ceramic products are considered. The principles of the developed method of ultrafast sintering of oxide ceramics with rates exceeding those typical of the conventional methods by two or three orders of magnitude are described. The development of this method has resulted from a purposeful use of the functional capabilities of the gyrotron systems and the engineering solutions implemented therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Microwave Processing of Materials, Publication NMAB-473, National Academy Press, Washington (1994).

  2. Yu. V. Bykov, K. I. Rybakov, and V. E. Semenov, J. Phys. D: Appl. Phys., 34, R55 (2001).

    Article  ADS  Google Scholar 

  3. Yu. V. Bykov, A. G. Eremeeev, M. Yu. Glyavin, et al., Radiophys. Quantum Electron., 61, No. 10 (2018).

  4. W. W. Ho, Millimeter Wave Dielectric Property Measurement of Gyrotron Window Materials, Tech. Report ORNL/SUB/83-51926/2, Oak Ridge National Laboratory, Oak Ridge (1985).

  5. V. V. Meriakri, in: V. E. Lyubchenko, ed., The Science and Technology of Millimeter Wave Components and Devices, Taylor and Francis, London (2001), p. 117.

  6. H. D. Kimrey and M.A. Janney, in: W. H. Sutton, M. H. Brooks, and I. J. Chabinsky, ed., Mater. Res. Soc. Symp. Proc., Vol. 124, Microwave Proc. Materials, Mater. Res. Soc., Pittsburgh (1988), p. 367.

    Google Scholar 

  7. A. Birnboim, D. Gershon, J. Calame, et al., J. Am. Ceram. Soc., 81, 1493 (1998).

    Article  Google Scholar 

  8. S. Sano, Y. Makino, S. Miyake, et al., J. Mater. Sci. Lett., 19, 2247 (2000).

    Article  Google Scholar 

  9. H. D. Kimrey, T. L. White, T. S. Bigelow, and P. F. Becher, J. Microwave Power Electromagnetic Energy, 21, No. 2, 81 (1986).

    Google Scholar 

  10. J. D. Katz, R. D. Blake, and J. J. Petrovic, Ceramics Eng. Sci. Proc., 9, Nos. 7–8, 725 (1988).

    Article  Google Scholar 

  11. Yu. Bykov, A. Eremeev, V. Flyagin, et al., in: D. E. Clark, D.C. Folz, S. J. Oda, and R. Silberglitt, ed., Microwaves: Theory Appl. Materials Proc. III, Amer. Ceram. Soc., Westerville (1995), p. 133.

  12. K. L. Felch, B. G. Danly, H. R. Jory, et al., Proc. IEEE, 87, 752 (1999).

    Article  Google Scholar 

  13. Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, et al., Persp. Mater., No. 6 (special issue), part 2, 46 (2008).

  14. K. I. Rybakov and V. E. Semenov, Phys. Rev. B, 52, No. 5, 3030 (1995).

    Article  ADS  Google Scholar 

  15. K. I. Rybakov, E.A.Olevsky, and V. E. Semenov, Scripta Mater ., 66, No. 12, 1049 (2012).

    Article  Google Scholar 

  16. K. I. Rybakov, V. E. Semenov, G. Link, and M. Thumm, J. Appl. Phys., 101, 084915 (2007).

    Article  ADS  Google Scholar 

  17. Yu.V. Bykov, S.V. Egorov, A.G. Eremeev, et al., J. Mater. Sci., 36, 131 (2001).

    Article  ADS  Google Scholar 

  18. Z. Xie, O. Yang, H. Huang, and Y. Huang, J. Europ. Cer. Soc., 19, 381 (1999).

    Article  Google Scholar 

  19. S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, et al., Possiisk. Nanotekhnol., 3, Nos. 5–6, 13 (2008).

    Google Scholar 

  20. Yu. V. Egorov, A. G. Eremeev, S. V. Egorov, et al., RF Patent No. 2352540, MPK C04V35/00, “The device for sintering a ceramic product using microwave heating with external pressure applied” [in Russian], Claimed: October 24, 2007; published: April 20, 2009.

  21. Yu. Bykov, S.V. Egorov, A.G. Eremeev, et al., J. Materials Proc. Tech., 214, No. 2, 210 (2014).

    Article  Google Scholar 

  22. Yu. V. Egorov, S. V. Egorov, A. G. Eremeev, et al., RF Patent No. 2592293, MPK C04V35/64, Claimed: March 02, 2015; published: July 20, 2016.

  23. Yu. Bykov, S. V. Egorov, and A. G. Eremeev, Phys. Status Solidi, 10, No. 6, 945 (2013).

    Article  Google Scholar 

  24. S. S. Balabanov, Yu. Bykov, S.V.Egorov, et al., Quantum Electron., 47, No. 4, 396 (2013).

    Article  ADS  Google Scholar 

  25. D. A. Permin, E. M. Gavrishchuk, O. N. Klyusik, et al., Adv. Powder Technol., 27, No. 6, 2457 (2016).

    Article  Google Scholar 

  26. L. Esposito, A. Piancastelly, Yu. Bykov, et al., Opt. Mater. , 35, No. 4, 761 (2013).

    Article  ADS  Google Scholar 

  27. R. Raj, J. Eur. Ceram. Soc., 32, 2293 (2012).

    Article  Google Scholar 

  28. M. Yu, S. Grasso, R. Mckinnon, et al., Adv. Appl. Ceram., 116, 24 (2017).

    Article  Google Scholar 

  29. Yu. Bykov., S. V. Egorov, A.G.Eremeev, et al., J. Am. Ceram. Soc., 96, 3518 (2015).

    Article  Google Scholar 

  30. K. I. Rybakov, Yu. Bykov, A. G. Eremeev, et al., in: Proc. Properties Adv. Ceramics Composites VII (Ceramic Trans)., Wiley, Hoboken (2015), Vol. 252, p. 57.

  31. Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, et al., TechṖhys., 63, No. 3, 391 (2018).

    Google Scholar 

  32. Yu. Bykov, S. V. Egorov, A. G. Eremeev, et al., Materials, 9, No. 8, 684 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kholoptsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 11, pp. 883–894, November 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, Y.V., Egorov, S., Eremeev, A.G. et al. Millimeter-Wave Gyrotron System for Research and Application Development. Part 2. High-Temperature Processes in Polycrystalline Dielectric Materials. Radiophys Quantum El 61, 787–796 (2019). https://doi.org/10.1007/s11141-019-09936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09936-3

Navigation