Skip to main content
Log in

Finding Morphology Points of Electrocardiographic-Signal Waves Using Wavelet Analysis

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a new algorithm for determining the basic significant points of various electrocardiographic-signal waves taking into account information from all available leads and ensuring a similar or higher accuracy compared with that of other up-to-date technologies. The test results of the algorithm efficiency for the QT data base [1] show a sensitivity above 97% when detecting the electrocardiographic-signal peaks, and 96% for their onsets and offsets, as well as the positive predictive value exceeding 97% for the peaks of the complexes, which is the best result compared with those of the previously known algorithms. As distinct from them, the proposed approach also allows one to determine the wave morphology. For the proposed algorithm, the delineation errors of all significant points are below the tolerances specified by the Committee of General Standards for Electrocardiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://physionet.org/physiobank/database/qtdb/.

  2. A. Grossmann and J. Morlet, SIAM J. Math. Anal., 15, No. 4, 723 (1984).

    Article  MathSciNet  Google Scholar 

  3. Y. Meyer, Wavelets: Algorithms and Applications, Society for Industrial and Applied Mathematics, Philadelphia (1993).

  4. N. M. Astaf’eva, Physics –Uspekhi, 39, No. 11, 1085 (1996).

    Article  ADS  Google Scholar 

  5. I. M. Dremin, O.V. Ivanov, and V. A. Nechitailo, Physics –Uspekhi, 44, No. 5, 447 (2001).

    Article  ADS  Google Scholar 

  6. E. B. Postnikov, Phys. Rev. E, 80, 057201 (2009).

    Article  ADS  Google Scholar 

  7. A. A. Anisimov, O. N. Pavlova, A. N. Tupitsyn, and A. N. Pavlov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 16, No. 11, 3 (2008).

    Google Scholar 

  8. A. A. Koronovskii, V. A. Makarov, A. N. Pavlov, et al., Wavelets in Neurodynamics and Neurophysiology [in Russian], Fizmatlit, Moscow (2013).

    Google Scholar 

  9. I. V. Dyachenko and N. I. Chervyakov, Infokommun. Tekhnol., 3, No. 4, 6 (2005).

    Google Scholar 

  10. G. M. Teptin, I. A. Latfullin, L. E. Mamedova, and Z. F. Kim, Radiophys. Quantum Electron., 54, No. 3, 210 (2011).

    Article  ADS  Google Scholar 

  11. G. S. Hooper, P. Yellowlees, T. H. Marwick, et al., J. Telemed. Telecare, 7, 249 (2001).

    Article  Google Scholar 

  12. J. A. A. Fairweather, P. Johnston, S. Luo, and P. W. Macfarlane, Comp. Cardiol., 34, No. 5, 193 (2007).

    Google Scholar 

  13. S. Lee, I. Y. Kim, and Y. C. Park, Comp. Meth. Prog. Biomed., 87, No. 3, 254 (2007).

    Article  Google Scholar 

  14. D. N. Ivlev and I. Ya. Orlov, Radiophys. Quantum Electron., 47, No. 7, 535 (2004).

    Article  ADS  Google Scholar 

  15. M. G. Khan, Fast ECG Analysis [in Russian], Binom, Moscow (2009).

    Google Scholar 

  16. J. Martinez, R. Almeida, S. Olmos, et al., IEEE Trans. Biomed. Eng., 51, No. 4, 570 (2004).

    Article  Google Scholar 

  17. P. Addison, Physiolog. Meas., 26, No. 3, 155 (2005).

    Article  ADS  Google Scholar 

  18. L. Y. Di Marco and L. Chiari, BioMed. Eng. OnLine, 10, 23 (2011).

    Article  Google Scholar 

  19. J. M. Bote, J. Recas, F. Rincón, et al., IEEE J. Biomed. Health Inform., 22, No. 2, 429 (2017).

    Article  Google Scholar 

  20. C. Li, C. Zheng, and C. Tai, IEEE Trans. Biomed. Eng., 42, No. 1, 21 (1995).

    Article  ADS  Google Scholar 

  21. S. Mallat, IEEE Trans. Acoust. Speech Sign. Proc., 37, No. 12, 2091 (1989).

    Article  Google Scholar 

  22. A. Cohen and J. Kovacevic, Proc. IEEE, 84, No. 4, 514 (1996).

    Article  Google Scholar 

  23. I. A. Latfullin, Z. F. Kim, and G. M. Teptin, Vest. Aritm., No. 53, 44 (2009).

  24. S. G. Mallat and S. Zhong, IEEE Trans. Pat. Anal. Mach. Intel., 14, No. 7, 710 (1992).

    Article  Google Scholar 

  25. P. Laguna, R. G. Mark, A. L. Goldberger, and G. B. Moody, Comput. Cardiol., 24, 673 (1997).

    Google Scholar 

  26. A. L. Goldberger, L. A. N. Amaral, L. Glass, et al., Circulation, 101, No. 23, e215 (2000).

    Article  Google Scholar 

  27. Association for the Advancement of Medical Instrumentation, NSI/AAMI EC57:1998/(R)2008 (Revision of AAMI ECAR: 1987) (1999).

  28. F. Rincón, J. Recas, N. Khaled, and D. Atienza, IEEE Trans. Inf. Technol. Biomed., 15, No. 6, 854 (2011).

    Article  Google Scholar 

  29. “The CSE working party,” Eur. Heart J., 6, No. 10, 815 (1985).

  30. S. Mehta and N. Lingayat, in: Proc. World Congress on Engineering and Computer Sciences, San Francisco, October 22–24, 2008, p. 22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ivanchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 8–9, pp. 773–789, August–September 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyakulina, A.I., Yusipov, I.I., Moskalenko, V.A. et al. Finding Morphology Points of Electrocardiographic-Signal Waves Using Wavelet Analysis. Radiophys Quantum El 61, 689–703 (2019). https://doi.org/10.1007/s11141-019-09929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09929-2

Navigation