Skip to main content

Advertisement

Log in

Evaluation of Wind Wave Growth Parameters Basing on Spectral Fluxes

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe the main regimes of the wind wave dynamics, which correspond to the continuity of the fluxes of the wave momentum, energy, and action, on the basis of the wave turbulence theory. Basing on the experimental data about the wave growth, the energy flux into the largescale range (inverse cascade within the wave turbulence theory) is evaluated. The intensity of the direct energy cascade to the short-wave range is estimated basing on experimental parameterization of the wind wave frequency spectra, which corresponds to the Kolmogorov—Zakharov spectrum E(ω) ∝ ω−4. The obtained estimates show that intensity of the direct cascade exceeds that of the inverse one by two orders of magnitude. An approximate solution for the direct energy cascade is found as a perturbation of the classical Zakharov—Zaslavsky solution for the inverse cascade with a zero energy flux. The results are discussed in correlation with the development of spectral wind wave models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Cavaleri, J.-H. G. M. Alves, F. Ardhuin, et al., Progr. Ocean., 75, 603 (2007).

    Article  Google Scholar 

  2. K. Hasselmann, J. Fluid Mech., 12, 481 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  3. V. E. Zakharov and N. N. Filonenko, Dokl. Akad. Nauk SSSR, 170, 6, 1292 (1966).

    Google Scholar 

  4. V. E. Zakharov and M. M. Zaslavsky, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 18, 9, 970 (1982).

    Google Scholar 

  5. V. V. Geogdzhaev and V. E. Zakharov, JETP Lett., 106, No. 184, 3, 184 (2017).

  6. S. Kitaigoroskii, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1, 105 (1962).

    Google Scholar 

  7. Y. Toba, J. Oceanogr. Soc. Japan, 29, 209 (1973).

    Article  Google Scholar 

  8. J. A. Battjes, T. J. Zitman, and L. H. Holthuijsen, J. Phys. Oceanogr., 17, No. 8, 1288 (1987).

    Article  ADS  Google Scholar 

  9. K. Hasselmann, T. P. Barnett, E. Bouws, et al., Dtsch. Hydrogh. Zeitschr. Suppl., 12, No. A8 (1973).

  10. M. A. Donelan, J. Hamilton, and W. H. Hui, Phil. Trans. Roy. Soc. Lond. A, 315, 509 (1985).

    Article  ADS  Google Scholar 

  11. G. S. Golitsyn, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 46, 1, 10 (1982).

    Google Scholar 

  12. S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov, Nonlin. Proc. Geophys., 2, 891 (2005).

    Article  ADS  Google Scholar 

  13. S. I. Badulin, A. V. Babanin, D. Resio, and V. E. Zakharov, J. Fluid Mech., 591, 339 (2007).

    Article  ADS  Google Scholar 

  14. S. I. Badulin, A. V. Babanin, D. Resio, and V. E. Zakharov, Proc. IUTAM Symposium, Moscow, 25–30 August 2006, Springer, New York, 6, 175 (2008).

  15. E. Gagnaire-Renou, M. Benoit, and S. I. Badulin, J. Fluid Mech., 669, 178 (2011).

    Article  ADS  Google Scholar 

  16. V. E. Zakharov, Procedia IUTAM. 2018. V. 26. IUTAM Symposium Wind Waves, September4–8, 2017, London, p. 43.

  17. V. E. Zakharov and S. I. Badulin, Doklady Earth Sci., 440, 1440 (2011).

    Article  ADS  Google Scholar 

  18. V. E. Zakharov, Eur. J. Mech. B/Fluids, 18, 327 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Pushkarev and V. Zakharov, Ocean Modelling, 103, 18 (2016).

    Article  ADS  Google Scholar 

  20. K. Hasselmann, D. B. Ross, and P. Müller, J. Phys. Oceanogr., 6, 200 (1976).

    Article  ADS  Google Scholar 

  21. Y. Toba, J. Oceanogr. Soc. Japan, 28, 109 (1972).

    Article  Google Scholar 

  22. V. E. Zakharov and M. M. Zaslavsky, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 19, No. 4, 406 (1983).

    Google Scholar 

  23. S. Abdalla and L. Cavaleri, J. Geophys. Res., 107, No. C7, 3080 (2002).

    Article  ADS  Google Scholar 

  24. R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long, J. Fluid Mech., 102, 1 (1981).

    Article  ADS  Google Scholar 

  25. W. J. Plant, J. Geophys. Res., 87, No. C3, 1961 (1982).

    Article  ADS  Google Scholar 

  26. R. W. Stewart, Boundary-Layer Meteorol., 6, 151 (1974).

    Article  ADS  Google Scholar 

  27. M. A. Donelan and W. J. Pierson Jr., J. Geophys. Res., 92, No. C5, 4971 (1987).

    Article  ADS  Google Scholar 

  28. S. V. Hsiao and O. H. Shemdin, J. Geophys. Res., 88, No. C14, 9841 (1983).

    Article  ADS  Google Scholar 

  29. V. E. Zakharov and M. M. Zaslavsky, Izv. Akad. Nauk USSR, Ser. Fiz. Atm. Okeana, 19, No. 3, 282 (1983).

    Google Scholar 

  30. S. L. Weber, J. Phys. Oceanogr., 24, 1388 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Badulin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 8–9, pp. 614–621, August–September 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badulin, S.I., Geogdzhaev, V.V. Evaluation of Wind Wave Growth Parameters Basing on Spectral Fluxes. Radiophys Quantum El 61, 545–552 (2019). https://doi.org/10.1007/s11141-019-09915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09915-8

Navigation