Skip to main content
Log in

Evolution of Narrow-Band Noise Beams for Large Acoustic Reynolds Numbers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider propagation of intense acoustic beams having a noise temporal structure at the initial aperture. The evolution of the probability distribution and the wave spectrum at a discontinuous stage of propagation is studied experimentally when the field on the radiator axis represents a sequence of discontinuities with universal behavior between them. It has been shown, both theoretically and experimentally, that in this case the field spectrum retains its shape determined by the probability distribution of the frequency of the initial wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. M. Blackstock, in: Proc. Third Interagency Symposium on University Res. Trans. Noise, University of Utah, Salt Lake City (1975), p. 389.

  2. B. J. Tester and C. L. Morfey, J. Sound Vibration, 46, No. 1, 79 (1976).

  3. C. L. Morfey and G. P. Howell, Am. Inst. Aeron. Astron. J, 19, 986 (1981).

    Article  Google Scholar 

  4. M. J. Crocker, ed., Handbook of Noise and Vibration Control, John Wiley and Sons, Hoboken (2007).

    MATH  Google Scholar 

  5. K. L. Gee, T. B. Gabrielson, A. A. Atchley, and V. W. Sparrow, Am. Inst. Aeron. Astron. J., 43, No. 6, 1398 (2005).

    Article  Google Scholar 

  6. K. L. Gee, V. W. Sparrow, M. M. James, et al., J. Acoust. Soc. Am., 123, No. 6, 4082 (2008).

    Article  ADS  Google Scholar 

  7. D. F. Pernet and R. C. Payne, J. Sound Vib., 17, No. 3, 383 (1971).

    Article  ADS  Google Scholar 

  8. F. M. Pestorius and D.T. Blackstock, in: L. Bjorno, ed., Finite-Amplitude Wave Effects in Fluids, IPC Sci. Technol. Press, Ltd., Guildford (1973), p. 24.

  9. K. Sakagami, S. Aoki, I. M. Chou, et al., J. Acoust. Soc. Japan. E, 3, No. 1, 43 (1982).

    Article  Google Scholar 

  10. L. Bjorno and S. N. Gurbatov, Akust. Zh., 31, No. 3, 303 (1985).

    ADS  Google Scholar 

  11. M. Muhlestein and K. Gee, in: Proc. Meetings Acoust., 161-ASA, 23–27 May, 2011, Vol. 12, 045002.

  12. B. O. Reichman, M. B. Muhlestein, K. L. Gee, et al., J. Acoust. Soc. Am., 139, No. 3, 1390 (2016).

    Article  ADS  Google Scholar 

  13. O.V. Rudenko and S. I. Soluyan, Theoretical Fundamentals of Nonlinear Acoustics [in Russian], Mauka, Moscow (1975).

    Google Scholar 

  14. N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zaboloyskaya, Nonlinear Theory of Sound Beams [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  15. O.V. Rudenko, Acoust. Phys., 56, No. 4, 457 (2010).

    Article  ADS  Google Scholar 

  16. O.V. Rudenko, Sov. Phys. Usp., 29, No. 7, 620 (1986).

    Article  ADS  Google Scholar 

  17. J. Bec and U. Frisch, in: M. Lesieur, A. Yaglom, and F. David, eds., New Trends in Turbulence, Springer-EDP Sciences, Berlin (2001), p. 341.

    Google Scholar 

  18. S. N. Gurbatov and O. V. Rudenko, in: M. F. Hamilton and D. T. Blackstock, eds., Nonlinear Acoustics, Academic Press, New York (1998), p. 377.

    Google Scholar 

  19. W. A. Woyczynski, Burgers-KPZ Turbulence. Gottingen Lectures, Springer–Verlag, Berlin (1998).

    Book  Google Scholar 

  20. J. Bec and K. Khanin, Phys. Reports, 447, Nos. 1–2, 1 (2007).

  21. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics, Springer–Verlag, Berlin (2011).

    MATH  Google Scholar 

  22. S. Gurbatov, M. Deryabin, D. Kasyanov, and V. Kurin, J. Sound Vibration, 439, 208 (2019).

    Article  ADS  Google Scholar 

  23. O. V. Rudenko, S. N. Gurbatov, and C. M. Hedberg, Nonlinear Acoustics Through Problems and Examples, Trafford Publishing, Bloomington (2010).

    Google Scholar 

  24. O. V. Rudenko and A. S. Chirkin, Akust. Zh., 20, No. 2, 297 (1974).

    Google Scholar 

  25. S. N. Gurbatov, and A. N. Malakhov, Akust. Zh., 23, No. 4, 569 (1977).

    Google Scholar 

  26. S. N. Gurbatov and L.G. Shepelevich, Radiophys. Quantum Electron., 21, No. 11, 1131 (1978).

    Article  ADS  Google Scholar 

  27. S. N. Gurbatov, M. S. Deryabin, D. A. Kasyanov, and V. V. Kurin, Radiophys. Quantum Electron., 59, No. 10, 794 (2016).

    Article  ADS  Google Scholar 

  28. S. N. Gurbatov, M. S. Derybin, D. A. Kas’yanov, and V. V. Kurin, Acoust. Phys., 63, No. 3, 260 (2017).

    Article  ADS  Google Scholar 

  29. V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, Akust. Zh., 31, No. 4, 423 (1985).

    ADS  Google Scholar 

  30. O. Sapozhnikov, V. Khokhlova, and D. Cathino, J. Acoust. Soc. Am., 115, No. 5, 1982 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Gurbatov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 7, pp. 541–554, July 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurbatov, S.N., Deryabin, M.S., Kasyanov, D.A. et al. Evolution of Narrow-Band Noise Beams for Large Acoustic Reynolds Numbers. Radiophys Quantum El 61, 478–490 (2018). https://doi.org/10.1007/s11141-018-9909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9909-0

Navigation