Skip to main content
Log in

Impact of the Ionospheric Day–Night Non-Uniformity on the ELF Radio-Wave Propagation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The real structure of the lower ionosphere should be taken into account when propagation of extremely low frequency (ELF) radio waves is modeled and the global electromagnetic (Schumann) resonance in the Earth–ionosphere cavity is studied. In the present work, we use a 2D telegraph equation (2DTE) to estimate the effect of the ionospheric day–night non-uniformity on the electromagnetic field amplitude at the Schumann-resonance and higher frequencies. The properties of the cavity are accounted for by using the full wave solution technique through conductivity profiles in the daytime and night-time conditions. Electromagnetic fields in the non-uniform cavity are found by using a 2DTE. Both the sharp terminator model and the model of a smooth day–night transition were considered. The main attention was focused on effects arising on 5000-km paths that are perpendicular or parallel to the solar terminator line. The data were computed for a series of frequencies. A comparison of the calculated data with observation results is also performed and an interpretation of the observed effects is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Madden and W. Thompson, Rev. Geophys., 3, No. 2, 211 (1965).

    Article  ADS  Google Scholar 

  2. P. V. Bliokh, A. P. Nickolaenko, and Yu. F. Filippov, Geomagn. Aeron., 8, No. 2, 250 (1968).

    Google Scholar 

  3. P. V. Bliokh, A. P. Nickolaenko, and Yu. F. Filippov, Global Electromagnetic Resonances in the Earth–Ionosphere Cavity [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  4. P. V. Bliokh, A. P. Nickolaenko, and Yu. F. Filippov, Schumann Resonances in the Earth–Ionosphere Cavity, Peter Peregrinus, Ltd., London (1980).

    Google Scholar 

  5. L. M. Rabinovich, Radiophys. Quantum Electron., 29, No. 6, 475 (1986).

    Article  ADS  Google Scholar 

  6. A. P. Nickolaenko, Radiophys. Quantum Electron., 29, No. 1, 26 (1986).

    Article  ADS  Google Scholar 

  7. V. V. Kirillov, Prob. Diff. Rasprostr. Radiovoln, No. 25, 35 (1993).

  8. V. V. Kirillov, Radiophys. Quantum Electron., No. 9, 737 (1996).

  9. V. V. Kirillov, V. N. Kopeikin, and V.K. Mushtak, Geomagn. Aeron., 37, No. 3, 341 (1997).

    Google Scholar 

  10. V. V. Kirillov and V. N. Kopeikin, Radiophys. Quantum Electron., 45, No. 12, 929 (2002).

    Article  ADS  Google Scholar 

  11. O. Pechony and C. Price, Radio Sci ., 39, No. 5, RS5007 (2004).

    Article  ADS  Google Scholar 

  12. O. Pechony, “Modeling and simulations of Schumann resonance parameters observed at the Mitzpe Ramon field station” [in Russian], Ph.D. Thesis, Tel-Aviv University (2007).

  13. O. Pechony, C. Price, and A. P. Nickolaenko, Radio Sci ., 42, No. 2, RS2S06 (2007).

    Article  Google Scholar 

  14. H. Yang and V. P. Pasko, Geophys. Res. Lett ., 32, No. 3, L03114 (2005).

    Article  ADS  Google Scholar 

  15. H. Yang, V.P. Pasko, and Y. Yair, Radio Sci ., 41, No. 2, RS2S03 (2006).

    Google Scholar 

  16. S. Toledo-Redondo, A. Salinas, J.A. Morente-Molinera, et al., J. Comput. Phys., 236, No. 3, 367 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. A.P. Nickolaenko, Yu. P. Galuk, and M. Hayakawa, Radiofiz. Élektron., 22, No. 2, 29 (2017).

    Google Scholar 

  18. A.P. Nickolaenko, Yu.Ṗ. Galuk, and M. Hayakawa, SpringerPlus, 5, No. 1, 108 (2016).

    Article  Google Scholar 

  19. A.P. Nickolaenko, Yu. P. Galuk, and M. Hayakawa, Telecommun. Radio Eng., 74, No. 16, 1483 (2015).

    Article  Google Scholar 

  20. I. G. Kudintseva, A. P. Nickolaenko, M. J. Rycroft, and A. Odzimek, Annals Geophys., 59, No. 5, A0545 (2016).

    Google Scholar 

  21. E.M. Gyunninen and Yu. P. Galuk, Prob. Diff. Rasprostr. Radiovoln, No. 11, 209 (1972).

  22. Yu.P. Galuk, A.P. Nickolaenko, and M. Hayakawa, Telecommun. Radio Eng., 74, No. 15, 1377 (2015).

    Article  Google Scholar 

  23. M. Ishaq and D. L. Jones, Electron. Lett., 13, No. 2, 254 (1977).

    Article  ADS  Google Scholar 

  24. A.P. Nickolaenko and M. Hayakawa, Resonances in the Earth–Ionosphere Cavity, Kluwer Academic Publ., Dordrecht (2002).

    Google Scholar 

  25. A. Nickolaenko and M. Hayakawa, Schumann Resonance for Tyros (Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity, Ser. XI, Springer Geophysics, Springer, Tokyo (2014).

    Book  Google Scholar 

  26. C. Price, Atmosphere, 7, No. 9, 116 (2016).

    Article  ADS  Google Scholar 

  27. A. A. Samarsky, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  28. http: //netlib.org/blas.

  29. http: //www.openblas.net.

  30. A.C. Fraser-Smith and P.R. Bannister, Radio Sci ., 33, No. 1, 83 (1998).

    Article  ADS  Google Scholar 

  31. A.P. Nickolaenko, Radiofiz. Élektron., 12, No. 2, 345 (2007).

    Google Scholar 

  32. A. Melnikov, C. Price, G. Sάtori, and M. Fullekrug, J. Atmos. Solar-Terr. Phys., 66, 1187 (2004).

    Article  ADS  Google Scholar 

  33. G. Sάtori, M. Neska, E. Williams, and J. Szendroi, Radio Sci., 42, No. 2, RS2S10 (2007).

    Article  Google Scholar 

  34. A.P. Nickolaenko, Radiofiz. Élektron., 10, No. 3, 399 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Galuk.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 3, pp. 198–215, March 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galuk, Y.P., Nickolaenko, A.P. & Hayakawa, M. Impact of the Ionospheric Day–Night Non-Uniformity on the ELF Radio-Wave Propagation. Radiophys Quantum El 61, 176–191 (2018). https://doi.org/10.1007/s11141-018-9880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9880-9

Navigation