Skip to main content
Log in

On the Connection Between the Spatial Behavior of the Total Electron Content of the Ionosphere on the GPS Signal Path and the Ionospheric Artificial Airglow in the 630 nm Line

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of simultaneous measurements of the total electron content (TEC) of the ionosphere on the GPS signal path and the ionospheric artificial airglow in the atomic oxygen red line (λ = 630 nm) during HF pumping of the ionosphere by the Sura facility radiation. It is very likely that when the “navigation satellite—GPS receiver” path of a signal crosses the artificial airglow spot, the maximum brightness of the latter on the line of sight of the optical device at the navigation satellite was observed in the region of the TEC minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Gurevich, Phys. Usp., 50, No. 11, 1091 (2007).

    Article  ADS  Google Scholar 

  2. S. M. Grach, E. N. Sergeev, E. V. Mishin, and A. V. Shindin, Phys. Usp., 59, No. 11, 1091 (2016).

    Article  ADS  Google Scholar 

  3. F. B. Cherny, Propagation of Radio Waves [in Russian], Sovetskoye Radio, Moscow (1962).

    Google Scholar 

  4. V. E. Kunitsyn, E.D.Tereshchenko, and E. S.Andreeva, Radio Tomography of the Ionosphere [in Russian], Fizmatlit, Moscow (2007).

    Google Scholar 

  5. M. J. McEwan, L. F. Phillips, Chemistry of Atmosphere, John Wiley & Sons, New York (1975).

    Google Scholar 

  6. P. A. Bernhardt, C. A. Tepley, and L. M. Duncan, J. Geophys. Res., 94, No. 47, 9071 (1989).

    Article  ADS  Google Scholar 

  7. M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., J. Geophys. Res. Space Phys., 108, No. A4, 1141 (2003).

    Article  ADS  Google Scholar 

  8. M. J. Kosch, T. Pedersen, E. Mishin, et al., J. Geophys. Res., 112, No. A8, A08304 (2007).

    Article  ADS  Google Scholar 

  9. S. M. Grach, M. J. Kosch, V. A. Yashnov, et al., Ann. Geophys., 25, No. 3, 689 (2007).

    Article  ADS  Google Scholar 

  10. S. M. Grach, V. V. Klimenko, A. V. Shindin, et al., Radiophys. Quantum Electron., 55, Nos. 1–2, 33 (2012).

    Article  ADS  Google Scholar 

  11. A. V. Shindin, S. M. Grach, E. N. Sergeev, and A. V. Ryabov, Vestnik Nizh. Univer. Lobach., 4, No. 1, 105 (2012).

    Google Scholar 

  12. F. T. Djuth, T. R. Pedersen, E. A. Gerken, et al., Phys. Rev. Lett., 94, No. 12, 125001 (2005).

    Article  ADS  Google Scholar 

  13. É. L. Afraimovich and N. P. Perevalova, GPS Monitoring of the Upper Atmosphere of the Earth [in Russian], Research Center of Reconstructive and Restorative Surgery, Siberian Branch of the Russian Academy of Medical Sciences, Irkutsk (2006).

  14. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford, New York (1964).

    Google Scholar 

  15. E. D. Tereshchenko, A. N. Milichenko, V. L. Frolov, and R. Yu. Yurik, Radiophys. Quantum Electron., 51, No. 11, 842 (2008).

    Article  ADS  Google Scholar 

  16. G. Milikh, A. Gurevich, K. Zybin, and J. Secan, Geophys. Res. Lett., 35, No. 22, L22102 (2008).

    Article  ADS  Google Scholar 

  17. V. L. Frolov, G. P. Komrakov, V. E. Kunitsyn, et al., Radiophys. Quantum Electron., 53, No. 7, 379 (2010).

    Article  ADS  Google Scholar 

  18. A. V. Ryabov, S. M. Grach, A. V. Shindin, and D. S. Kotik, Radiophys. Quantum Electron., 54, No. 7, 441 (2011).

    Article  ADS  Google Scholar 

  19. V. E. Kunitsyn, A. M. Padokhin, A. E. Vasiliev, et al., Adv. Space Res., 47, No. 10, 1743 (2011).

    Article  ADS  Google Scholar 

  20. V. E. Kunitsyn, E. S. Vasilieva, V. L. Frolov, et al., Radio Sci., 47, No. 3, RS0L15 (2012).

    Google Scholar 

  21. A. Najmi, G. Milikh, J. Secan, et al., J. Geophys. Res. Space Phys., 119, No. 7, 6000 (2014).

    Article  ADS  Google Scholar 

  22. A. Najmi, G. Milikh, Y. M. Yampolski, et al., J. Geophys. Res. Space Phys., 120, No. 8., 6646 (2015).

    Article  ADS  Google Scholar 

  23. V. L. Frolov, E. A. Shorokhova, V. E. Kunitsyn, et al., Radiophys. Quantum Electron., 58, No. 10, 717 (2015).

    Article  ADS  Google Scholar 

  24. I. A. Nasyrov, D. A. Kogogin, A. V. Shindin, et al., Adv. Space Res., 47, No. 4, 1015 (2016).

    Article  ADS  Google Scholar 

  25. D. A. Kogogin, I. A. Nasyrov, S. M. Grach, et al., Geomagn. Aeron., 57, No. 1, 93 (2017).

    Article  ADS  Google Scholar 

  26. T. Pedersen, B. Gustavsson, E. Mishin, et al., Geophys. Res. Lett., 37, No. 2, L02106 (2010).

    Article  ADS  Google Scholar 

  27. E. Sergeev, S. Grach, A. Shindin, et al., Phys. Rev. Lett., 110, No. 6, 065002 (2013).

    Article  ADS  Google Scholar 

  28. P.A. Bernhardt, C. L. Siefring, S. J. Briczinski, et al., Radio Sci ., 51, No. 7, 1081 (2016).

    Article  ADS  Google Scholar 

  29. A. V. Shindin, S. M. Grach, V. V. Klimenko, et al., Radiophys. Quantum Electron., 57, No. 11, 759 (2014).

    Article  ADS  Google Scholar 

  30. A. V. Shindin, V. V. Klimenko, D. A. Kogogin, et al., Radiophys. Quantum Electron., 60, No. 11, 849 (2017).

    Article  ADS  Google Scholar 

  31. E. N. Sergeev, V. L. Frolov, S. M. Grach, and P. V. Kotov, Adv. Space Res., 38, 2518 (2006).

    Article  ADS  Google Scholar 

  32. S. M. Grach, E. N. Sergeev, A. V. Shindin, et al., J. Geophys. Res. Space Phys., 120, No. 1, 666 (2015).

    Article  ADS  Google Scholar 

  33. A. M. Nasyrov, Scattering of Radio Waves by Anisotropic Ionospheric Irregularities [in Russina], Kazan Univ. Press, Kazan (1991).

    Google Scholar 

  34. V. L. Frolov, Artificial Turbulence of the MIdlatitude Ionosphere [in Russian], Vestnik Nizh. Univer. Lobach., Nizhny Novgorod (2017).

    Google Scholar 

  35. M. Kosch, C. Bryers, M. T. Rietveld, et al., Earth Plan. Space, 66, No. 1, 159 (2014).

    Article  Google Scholar 

  36. V. V. Vas’kov and A. V. Gurevich, Thermal Nonlinear Phenomena in Plasmas [in Russian], Inst. Appl. Phys. Rus. Acad. Sci. USSR, Gorky (1979), p. 81.

  37. A. V. Gurevich, K. P. Zybin, H. C. Carlson, and T. Pedersen, Phys. Lett ., A305, 264 (2002).

    Article  ADS  Google Scholar 

  38. N. A. Gondarenko, S. L. Ossakow, and G. M. Milikh, J. Geophys. Res., 110, No. 9, A09304 (2005).

    ADS  Google Scholar 

  39. A. Gurevich, H. Carlson, M. Kelley, et al., Phys. Lett ., A251, 311 (1999).

    Article  ADS  Google Scholar 

  40. E. Kendall, R. Marshall, and R. T. Parris, J. Geophys. Res., 115, A08306 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Grach.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 3, pp. 181–197, March 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grach, S.M., Nasyrov, I.A., Kogogin, D.A. et al. On the Connection Between the Spatial Behavior of the Total Electron Content of the Ionosphere on the GPS Signal Path and the Ionospheric Artificial Airglow in the 630 nm Line. Radiophys Quantum El 61, 161–175 (2018). https://doi.org/10.1007/s11141-018-9879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9879-2

Navigation