Skip to main content
Log in

Measurement and Compensation for the Amplitude and Phase Spectral Distortions of an Interference Signal in Optical Coherence Tomography for the Relative Optical-Spectrum Width Exceeding 10%

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe a universal method of compensating for the arbitrary dispersion in the spectral and time domain optical coherence tomography systems. In combination with the amplitude method of correcting the optical-spectrum irregularities, this approach allows one to obtain the spectrally determined resolution if the instrument function is close to the Gaussian one. The efficiency of the method is demonstrated in the time and spectral domain optical coherence tomographies with the fully fiber-type optical systems for the relative optical-spectrum width exceeding 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, et al., Opt. Lett., 21, No. 22, 1839 (1996).

    Article  ADS  Google Scholar 

  2. W. Drexler, U. Morgner, F. X. Kartner, et al., Opt. Lett., 24, No. 21, 1221 (1999).

    Article  ADS  Google Scholar 

  3. B. Povazay, K. Bizheva, A. Unterhuber, et al., Opt. Lett., 27, No. 20, 1800 (2002).

    Article  ADS  Google Scholar 

  4. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications, Springer, Berlin (2008).

    Google Scholar 

  5. V.K. Batovrin, I. A. Garmash, V. M. Gelikonov, et al., Quantum Electron., 26, No. 2, 109 (1996).

    Article  ADS  Google Scholar 

  6. R. Tripathi, N. Nassif, J. S. Nelson, et al., Opt. Lett., 27, No. 6, 406 (2002).

    Article  ADS  Google Scholar 

  7. G. V. Gelikonov, V. M. Gelikonov, S. U. Ksenofontov, et al., in: V. V. Tuchin, ed., Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics, Environment and Material Science, Vol. 2, Kluwer Academic Publishers, Dordrecht (2004), p. 866.

    Google Scholar 

  8. G. V. Gelikonov, V. M. Gelikonov, S. U. Ksenofontov, et al., in: V. V. Tuchin, ed., Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring, and Materials Science, Springer, New York (2013), p. 1127.

  9. S. Lawman, Y. Dong, B. M. Williams, et al., Opt. Express, 24, No. 11, 12395 (2016).

    Article  ADS  Google Scholar 

  10. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, Electron. Lett., 33, No. 16, 1365 (1997).

    Article  Google Scholar 

  11. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, et al., Appl. Opt., 42, No. 16, 3038 (2003).

    Article  ADS  Google Scholar 

  12. J. F. de Boer, C. E. Saxer, and J. S. Nelson, Appl. Opt., 40, No. 31, 5787 (2001).

    Article  ADS  Google Scholar 

  13. A. F. Fercher, C. K. Hitzenberger, M. Sticker, et al., Opt. Express, 9, No. 12, 610 (2001).

    Article  ADS  Google Scholar 

  14. D. Marks, P. S. Carney, and S. A. Boppart, J. Biomed. Opt., 9, No. 6, 1281 (2003).

    Article  Google Scholar 

  15. J. Gong, B. Liu, Y. L. Kim, et al., Opt. Express, 14, No. 13, 5909 (2006).

    Article  ADS  Google Scholar 

  16. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, et al., Appl. Opt., 42, No. 2, 204 (2003).

    Article  ADS  Google Scholar 

  17. V. A. Matkivsky, A. A. Moiseev, S. Y. Ksenofontov, et al., Frontiers Optoelectron., 10, No. 3, 323 (2017).

    Article  Google Scholar 

  18. N. Lippok, S. Coen, P. Nielsen, et al., Opt. Express, 20, No. 21, 23398 (2012).

    Article  ADS  Google Scholar 

  19. K. Banaszek, A. S. Radunsky, and I. A. Walmsley, Opt. Commun., 269, No. 1, 152 (2007).

    Article  ADS  Google Scholar 

  20. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, et al., Laser Phys. Lett., 11, No. 10, 105601 (2014).

    Article  ADS  Google Scholar 

  21. B. E. Bouma and G. J. Tearney, eds., Handbook of Optical Coherence Tomography, M. Dekker, New York (2002).

    Google Scholar 

  22. V. M. Gelikonov, G. V. Gelikonov, N. D. Gladkova, et al., JETP Lett., 61, No. 2, 158 (1995).

    ADS  Google Scholar 

  23. V. M. Gelikonov, G.V.Gelikonov, N.D.Gladkova, V. I. Leonov, F. I. Fel’dshtein, and A. M. Sergeev, “A fiber-optic interferometer and fiber-optic piezoelectric transducer,” Patent No. 2100787 RF [in Russian], Bull No. 36, (1997).

  24. V. M. Gelikonov, G. V. Gelikonov, N. D. Gladkova, A. M. Sergeev, N. M. Shakhova, and F. I. Fel’dshtein, “A unit for optical coherence tomography, a fiber-optics scanner, and a method for in vivo diagnostics of biological tissue”, Patent No. 2148378 RF [in Russian], Bull. No. 13, (2000).

  25. V. M. Gelikonov, G. V. Gelikonov, S. Yu. Ksenofontov, et al., Instrum. Exp. Tech., 53, No. 3, 443 (2010).

    Article  Google Scholar 

  26. E.D. J. Smith, S. C. Moore, N. Wada, et al., IEEE Photon. Technol. Lett., 13, No. 1, 64 (2001).

    Article  ADS  Google Scholar 

  27. C. E. Shannon, Bell Syst. Tech. J., 27, No. 3, 379 (1948).

    Article  Google Scholar 

  28. D. Gabor, J. IEE, 93, No. 26, 429 (1946).

    Google Scholar 

  29. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, New York (2009).

    MATH  Google Scholar 

  30. O. V. Lazorenko and L. F. Chernogor, Radiofiz. Radioastron., 13, No. 4, 270 (2008).

    Google Scholar 

  31. V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, Opt. Spectrosc., 106, No. 3, 459 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Gelikonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 2, pp. 150–162, February 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelikonov, G.V., Gelikonov, V.M. Measurement and Compensation for the Amplitude and Phase Spectral Distortions of an Interference Signal in Optical Coherence Tomography for the Relative Optical-Spectrum Width Exceeding 10%. Radiophys Quantum El 61, 135–145 (2018). https://doi.org/10.1007/s11141-018-9877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9877-4

Navigation