Radiophysics and Quantum Electronics

, Volume 60, Issue 10, pp 824–835 | Cite as

Coherent Seismoacoustic Sounding of a Model of the Layered Sea Bottom Under Laboratory Conditions

  • V. V. Uvarov
  • V. I. Kalinina
  • A. A. Khil’ko
  • V. V. Kurin
  • A. I. Khil’ko

The algorithms developed for reconstructing the geoacoustic parameters of the bottom layers during their coherent sounding are experimentally verified under laboratory conditions. The algorithms use the parametric models of forming the signals reflected from the layered half-space. To solve the problem, an experimental setup for measuring the parameters of the sounding acoustic pulses reflected from a set of elastic layers placed in a water tank is developed at the Acoustics Division of N. I. Lobachevsky State University of Nizhny Novgorod. The devices for forming, radiating, and receiving the acoustic pulses reflected from the layered system are developed. The structure of reverberation interference in the measuring tank is studied. The parameters of the layered-bottom model are experimentally estimated for the optimized parameters of the sounding signals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Lazarev, A. I. Malekhanov, L.R. Merklin, et al., Acoust Phys., 58, No. 2, 192 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Lazarev, A. I. Malekhanov, L.R. Merklin, et al., Oceanology, 53, No. 6, 755 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    A. N. Ivakin, in: Boundary Influences in High Frequency Shallow Water Acoustics, University of Bath, Bath (2008), p. 185.Google Scholar
  4. 4.
    A. N. Ivakin and J. Sessarego, J. Acoust. Soc. Am., 122, EL165 (2007).Google Scholar
  5. 5.
    S. N. Gurbatov, S.A. Egorychev, V. V. Kurin, et al., in: Proc. Nizhny Novgorod Acoustic Scientific Session, TALAM, Nizhny Novgorod (2002), p. 33.Google Scholar
  6. 6.
    V. I. Romanova, A. I. Khil’ko, and I.P. Smirnov, in: Proc. XXVth Session of the Russian Acoustic Society and Session of the Scientific Council for Acoustics of the Russian Academy of Sciences, Vol. 2, GEOS, Moscow (2012), p. 280.Google Scholar
  7. 7.
    I.P. Smirnov, V. I. Kalinina, and A. I. Khil’ko, Acoust. Phys., 64, No. 1, 49 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    I.P. Smirnov, V. I. Kalinina, and A. I. Khil’ko, Acoust. Phys., 64, No. 2 (2018).Google Scholar
  9. 9.
    J. Bai and D. David Yingst, in: 84th Annual Int. Meeting, SEG, Denver, Colorado, October 26–31, 2014, p. 962.Google Scholar
  10. 10.
    D.W. Oldendurg, T. Sheuer, and S. Levy, Geophysics, 48, 1318 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    A. S. Alekseev, in: Some Methods and Algorithms for Interpreting Geophysical Data [in Russian], Nauka, Moscow (1967), p. 9.Google Scholar
  12. 12.
    Yu.P. Ampilov, A.Yu. Barkov, I. V. Yakovlev, et al., Tekhnol. Seismoraz., No. 4, 3 (2009).Google Scholar
  13. 13.
    I. V. Yakovlev, Yu. P. Ampilov, and K. E. Filippova, Tekhnol. Seismoraz., No. 1, 5 (2011).Google Scholar
  14. 14.
    J.K. Rice and J. S. White, SIAM Rev., 6, No. 3, 243 (1964).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Uvarov
    • 1
  • V. I. Kalinina
    • 1
  • A. A. Khil’ko
    • 2
  • V. V. Kurin
    • 2
  • A. I. Khil’ko
    • 1
    • 2
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations