Radiophysics and Quantum Electronics

, Volume 60, Issue 10, pp 808–823 | Cite as

Collisional Coupling of the Molecular Oxygen 16O2 Fine-Structure Lines Under Low Pressures

  • D. S. Makarov
  • I. N. Vilkov
  • M. A. Koshelev
  • A. A. Aderkina
  • M. Yu. Tretyakov
Article
  • 12 Downloads

We consider collisional coupling between the fine-structure lines of molecular oxygen near 60 GHz under pressures of up to 20 Torr. The observation possibility of the coupling effect manifestation in the oxygen line profile is analyzed by means of numerical simulation. The signal-to-noise ratio required for direct observation of the collisional coupling and deviations of the line parameters from the tabulated values related to the indirect effect manifestation in the spectra are numerically evaluated. By the example of the overlapping profiles of the 13+ and 3− lines, the impact of collisional coupling on the doublet profile is experimentally demonstrated. The results of the analysis of experimental spectra are in good agreement with the results of numerical simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Yu. Tretyakov, High-Precision Resontor Spectroscopy of Atmospheric Gases in the Millimeter and Submillimeter Wavelength Ranges [in Russian], Inst. Appl. Phys. Rus. Acad. Sci., Nizhny Novgorod (2016).Google Scholar
  2. 2.
    J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra, Elsevier, Amsterdam (2008).Google Scholar
  3. 3.
    E.W. Smith, J. Chem. Phys., 74, No. 12, 6658 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    P.W. Rosenkranz, IEEE Trans. Anten. Propagat., 23, No. 4, 498 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    I. E. Gordon, L. S. Rothman, C. Hill, et al., J. Quant. Spectrosc. Rad. Transfer, 203, 3 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    N. Jacquinet-Husson, R. Armante, N. A. Scott, et al., J. Mol. Spectrosc., 327, 31 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    D. S. Makarov, M.Yu. Tretyakov, and C. Boulet, J. Quant. Spectrosc. Rad. Transfer, 124, 1 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    M.Yu. Tretyakov, M.A. Koshelev, V. V. Dorovskikh, et al., J. Mol. Spectrosc., 231, 1 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    H. J. Liebe, P. W. Rosenkranz, and G. A. Hufford, J. Quant. Spectrosc. Rad. Transfer, 48, Nos. 5–6, 629 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    D. S. Makarov, M.Yu. Tretyakov, and P.W. Rosenkranz, J. Quant. Spectrosc. Rad. Transfer, 112, No. 9, 1420 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    K. S. Lam, J. Quant. Spectrosc. Rad. Transfer, 17, 351 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    J. H. Van Vleck and V. F. Weisskopf, Rev. Mod. Phys., 17, 227 (1945).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Koshelev, I.N. Vilkov, and M.Yu. Tretyakov, J. Quant. Spectrosc. Rad. Transfer, 169, 91 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    P.W. Rosenkranz, J. Quant. Spectrosc. Rad. Transfer, 39, 281 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    M.Yu. Tretyakov, M.A. Koshelev, D. S. Makarov, and M.V. Tonkov, Instr. Eksp. Tech., S7, No. 1, 78 (2008).CrossRefGoogle Scholar
  16. 16.
    M.Yu. Tretyakov, S.A. Volokhov, G.Yu. Golubyatnikov, et al., Int. J. IR MM Waves, 20, No. 8, 1443 (1999).CrossRefGoogle Scholar
  17. 17.
    A. V. Burenin, Radiophys. Quantum Electron., 17, No. 9, 984 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. S. Makarov
    • 1
  • I. N. Vilkov
    • 1
  • M. A. Koshelev
    • 1
  • A. A. Aderkina
    • 1
  • M. Yu. Tretyakov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations