Radiophysics and Quantum Electronics

, Volume 60, Issue 10, pp 797–807 | Cite as

Effective High-Frequency Permeability of Compacted Metal Powders

  • I. I. Volkovskaya
  • V. E. Semenov
  • K. I. Rybakov

We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Clark and W.H. Sutton, Annual Rev. Materials Sci., 26, 299 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    Yu.V. Bykov, K. I. Rybakov, and V. E. Semenov, J. Phys. D: Appl. Phys., 34, R55 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    S. Singh, D. Gupta, V. Jain, and A. K. Sharma, Materials and Manufacturing Processes, 30, No. 1, 1 (2015).CrossRefGoogle Scholar
  4. 4.
    R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, Nature, 399, 668 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    M. Gupta, and W. L.E. Wong, Microwaves and Metals, Wiley, Singapore (2007).CrossRefGoogle Scholar
  6. 6.
    J. Cheng, R. Roy, and D. Agrawal, J. Mater. Sci. Lett., 20, No. 17, 1561 (2001).CrossRefGoogle Scholar
  7. 7.
    M. M. Mahmoud, G. Link, and M. Thumm, J. Alloys and Compounds, 627, 231 (2015).CrossRefGoogle Scholar
  8. 8.
    D. A. G. Bruggeman, Ann. Phys-Berlin, Ser. 5, 24, 636 (1935).Google Scholar
  9. 9.
    D. J. Bergman and D. Stroud, in: H. Ehrenreich and D. Turnbull, eds., Solid State Physics: Advances in Research and Applications, 46, Academic Press, New York, (1992), p. 147.Google Scholar
  10. 10.
    K. I. Rybakov and V. E. Semenov, Radiophys. Quantum Electron., 48, No. 11, 888 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    K. I. Rybakov, V.E. Semenov, S.V. Egorov, et al., J. Appl. Phys., 99, 023506 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    S. V. Egorov, A.G. Eremeev, I.V. Plotnikov, et al., Radiophys. Quantum Electron., 53, Nos. 5–6, 354 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    K. I. Rybakov and V.E. Semenov, IEEE Trans. Microwave Theory and Techniques, 65, No. 5, 1479 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press (1960).Google Scholar
  15. 15.
    V.K. Arkadyev, Zh. Russ. Phys. Chem. Obshchestva. Fiz. Otdel, 45, No. 3, 103 (1913).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. I. Volkovskaya
    • 1
    • 2
  • V. E. Semenov
    • 1
  • K. I. Rybakov
    • 1
    • 2
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations