Radiophysics and Quantum Electronics

, Volume 60, Issue 10, pp 779–785 | Cite as

On the Possibility of Creating a Point-Like Neutron Source

  • S. V. Golubev
  • V. A. Skalyga
  • I. V. Izotov
  • A. V. Sidorov
  • S. V. Razin
  • R. A. Shaposhnikov
  • R. L. Lapin
  • A. F. Bokhanov
  • M. Yu. Kazakov
Article
  • 12 Downloads

We consider the possibility of creating a compact high-power neutron generator with a small emitting area (of the order of 100 μm) and a neutron yield of 1010s−1 on the basis of a deuterium–deuterium fusion reaction (or 1012 s−1 on the basis of a deuterium–tritium fusion reaction). The fusion takes place under bombardment of a deuterium- (or tritium-) saturated target by a high-current (about 100 mA) focused deuterium ion beam with an energy of ~ 100 keV. The ion beam with total current at a level of hundreds of milliamperes and small emittance (less than 0.1 π·mm·mrad), which is crucial for sharp focusing, can be generated by a quasi-gas-dynamic ion source of a new generation created on the basis of a discharge in an open magnetic trap sustained by high-power electromagnetic radiation of the millimeter wavelength range under electron cyclotron resonance conditions. Simulations of the focusing system for the experimentally obtained ion beam show the possibility to create a deuterium ion beam with a transverse size of 200 μm on the neutron-forming target. Prospects for using such a neutron source for neutron tomography are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Aksenov, Phys. Usp., 40, No. 5, 520 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    I. S. Anderson, R. L. McGreevy, and H. Z. Bilheux, Neutron Imaging and Applications, Springer, Boston, USA (2009).Google Scholar
  3. 3.
    T. Ditmire, J. Zweiback, V. P. Yanovsky, et al., Phys. Plasmas, 7, No. 5, 1993 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    J. Davis, G. M. Petrov, and A. L. Velikovich, Phys. Plasmas, 13, No. 6, 064501 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    D.P. Higginson, L. Vassura, M.M. Gugiu, et al., Phys. Rev. Lett., 115, No. 5, 054802 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    M. Roth, D. Jung, K. Falk, et al., Phys. Rev. Lett., 115, No. 4, 044802 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    I. Pomerantz, E. McCary, and A. R. Meadows, Phys. Rev. Lett., 113, No. 18, 184801 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    J. Davis, G. M. Petrov, Tz. Petrova, et al., Plasma Phys. Controlled Fusion, 52, No. 4, 045015 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Golubev, S. V. Razin, A. V. Sidorov, et al., Rev. Sci. Instrum., 75, No. 5, 1675 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    V. Skalyga, V. Zorin, I. Izotov, et al., Plasma Sources Sci. Technol., 15, No. 4, 727 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    V. Skalyga, I. Izotov, S. Golubev, et al., Rev. Sci. Instrum., 87, No. 2, 02A716 (2016).CrossRefGoogle Scholar
  12. 12.
    V. Skalyga, I. Izotov, A. Sidorov, et al., J. Instrum., 7, No. 10, 10010 (2012).CrossRefGoogle Scholar
  13. 13.
    V. Skalyga, I. Izotov, S. Razin, et al., Rev. Sci. Instrum., 85, No. 2, 02A702 (2014).CrossRefGoogle Scholar
  14. 14.
    S. V. Golubev, S. V. Razin, V. E. Semenov, et al., Rev. Sci. Instrum., 71, No. 2, 669 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    V. Skalyga, V. Zorin, I. Izotov, et al., Rev. Sci. Instrum., 77, No. 3, 03A325 (2006).CrossRefGoogle Scholar
  16. 16.
    V. Skalyga, I. Izotov, S. Golubev, et al., J. Appl. Phys., 118, No. 9, 093301 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    V. Skalyga, I. Izotov, S. Golubev, et al., Appl. Radiat. Isot., 106, 29 (2015).CrossRefGoogle Scholar
  18. 18.
    V. Skalyga, I. Izotov, S. Golubev, et al., Nucl. Instrum. Methods Phys. Res., 768, 146 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    F. R. Barth, H. A. Soloway, and G.R. Fairchild, Sci. American, 263, No. 4, 100 (1990).CrossRefGoogle Scholar
  20. 20.
    L.E. Farr, W. H. Sweet, J. S. Robertson, et al., Am. J. Roent. Radium Therapy Nucl. Med., 71, No. 2, 279 (1954).Google Scholar
  21. 21.
    R.F. Barth, J.A. Coderre, M.G. Vicente, and T. E. Blue, Clin. Cancer Res., 11, No. 11, 3987 (2005).CrossRefGoogle Scholar
  22. 22.
    Y. Nakagawa, K. Pooh, T. Kobayashi, et al., J. Neuro-Oncology, 62, Nos. 1–2, 87 (2003).Google Scholar
  23. 23.
    S. V. Golubev, I. V. Izotov, S.V. Razin, et al., Radiophys. Quantum Electron., 59, Nos. 8–9, 682 (2016).ADSGoogle Scholar
  24. 24.
    S. Golubev, V. Skalyga, I. Izotov, and A. Sidorov, J. Instrum., 12, No. 2, T02003 (2017).CrossRefGoogle Scholar
  25. 25.
    I. G. Brown, The Physics and Technology of Ion Sources, John Wiley & Sons Inc., New York (1989).Google Scholar
  26. 26.
    T. Kalvas, O. Tarvainen, T. Ropponen, et al., Rev. Sci. Instrum., 81, No. 2, 02B703 (2010).CrossRefGoogle Scholar
  27. 27.
    V. Skalyga, I. Izotov, S. Golubev, et al., Rev. Sci. Instrum., 87, No. 2, 02A715 (2016).CrossRefGoogle Scholar
  28. 28.
    V. A. Skalyga, I. V. Izotov, E.A. Mironov, et al., AIP Conf. Proc., 1771, 070014 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. V. Golubev
    • 1
  • V. A. Skalyga
    • 1
  • I. V. Izotov
    • 1
  • A. V. Sidorov
    • 1
  • S. V. Razin
    • 1
  • R. A. Shaposhnikov
    • 1
  • R. L. Lapin
    • 1
  • A. F. Bokhanov
    • 1
  • M. Yu. Kazakov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations