Radiophysics and Quantum Electronics

, Volume 60, Issue 10, pp 769–778 | Cite as

Equidistant Recording of the Spectral Components in Ultra-Wideband Spectral-Domain Optical Coherence Tomography

  • P. A. Shilyagin
  • S.Yu. Ksenofontov
  • A. A. Moiseev
  • D. A. Terpelov
  • V. A. Matkivsky
  • I. V. Kasatkina
  • Yu. A. Mamaev
  • G. V. Gelikonov
  • V. M. Gelikonov
Article
  • 21 Downloads

We develop an effective method for reducing nonequidistance when recording the spectral components of an interference signal in ultra-wideband spectral-domain optical coherence tomography. For this purpose, a corrector consisting of two identical prisms is used in a diffraction-grating spectrometer. The corrector rotation with respect to the diffraction-grating plane and a variation in the angle between the corrector elements allow one to adjust the equidistant spatial distribution of the spectral components in the photoreceiver array. It is shown experimentally that the developed method substitutes digital correction and leads to a significant reduction of the computational load in the optical coherence tomography device.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Fercher, C.K. Hitzenberger, G.Kamp, et al., Opt. Commun., 117, Nos. 1–2, 43 (1995).Google Scholar
  2. 2.
    M. A.Choma, M. V. Sarunic, C. H.Yang, et al., Opt. Express, 11, No. 18, 2183 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    V. M. Gelikonov, G.V.Gelikonov, and P. A. Shilyagin, Opt. Spectosc., 106, No. 3, 459 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    S.H.Yun, G. J.Tearney, J.F. de Boer, et al., Opt. Express., 11, No. 22, 2953 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    M.Wojtkowski, R. Leitgeb, A.Kowalczyk, et al., J. Biomed. Opt., 7, No. 3, 457 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    W. A.Traub, J. Opt. Soc. Am., 7, No. 9, 1779 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    N. Hagen and T. S.Tkaczyk, Appl. Opt., 50, No. 25, 5023 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. Jeon, J.Kim, U. Jung, et al., Appl. Opt., 50, No. 8, 1158 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    T.Wu, Z.Ding, L.Wang, et al., Opt. Express, 19, No. 19, 18430 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    N. Zhang, T. Huo, C.Wang, et al., Opt. Lett., 37, No. 15, 3075 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    D.Xu, Y.Huang, and J.U. Kang, Biomed. Opt. Express, 4, No. 9, 1519 (2013).CrossRefGoogle Scholar
  12. 12.
    A.Bradu, S.Van der Jeught, D.Malchow, et al., SPIE Proc., 7889, 78892E (2011).Google Scholar
  13. 13.
    S.Van der Jeught, A.Bradu, and A.G. Podoleanu, J. Biomed. Opt., 15, No. 3, 030511 (2010).Google Scholar
  14. 14.
    K. Zhang and J.U. Kang, Opt. Express, 18, No. 11, 11772 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    D.Xu, Y.Huang, and J.U. Kang, SPIE Proc., 9330, 93301B (2015).ADSCrossRefGoogle Scholar
  16. 16.
    S.Rivet, M. Maria, A. Bradu, et al., Opt. Express, 24, No. 3, 2885 (2016).Google Scholar
  17. 17.
    A.Payne and A. G. Podoleanu, SPIE Proc., 8571, 85712D (2013).ADSCrossRefGoogle Scholar
  18. 18.
    Z. Hu and A.M.Rollins, Opt. Lett., 32, No. 24, 3525 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    Y.Watanabe and T. Itagaki, J. Biomed. Opt., 14, No. 6, 060506 (2009).Google Scholar
  20. 20.
    S.-W. Lee, H.Kang, J.H. Park, et al., J. Opt. Soc. Korea, 19, No. 1, 55 (2015).CrossRefGoogle Scholar
  21. 21.
    G. V. Gelikonov, V.M.Gelikonov, and P. A. Shilyagin, SPIE Proc., 6847, 68470N (2008).ADSCrossRefGoogle Scholar
  22. 22.
    G. V. Gelikonov, V.M.Gelikonov, and P. A. Shilyagin, SPIE Proc., 8213, 82133H (2012).ADSCrossRefGoogle Scholar
  23. 23.
    A. A. Moiseev, G.V.Gelikonov, P.A. Shilyagin, et al., Radiophys. Quantum Electron., 55, Nos. 10–11, 654 (2012).Google Scholar
  24. 24.
    S.Yu.Ksenofontov and T.V.Vasilenkova, “Method for optimizing the maximum-intensity projection technique for visualization of the scalar three-dimensional data in the static and interactive modes and real time” [in Russian], Patent No. 2533055 RF, Bull. No. 32 (2014).Google Scholar
  25. 25.
    L. A. Matveev V. Y. Zaitsev, G. V. Gelikonov, et al., Opt. Lett., 40, No. 7, 1472 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. A. Shilyagin
    • 1
  • S.Yu. Ksenofontov
    • 1
    • 2
  • A. A. Moiseev
    • 1
  • D. A. Terpelov
    • 1
  • V. A. Matkivsky
    • 1
  • I. V. Kasatkina
    • 1
  • Yu. A. Mamaev
    • 1
  • G. V. Gelikonov
    • 1
  • V. M. Gelikonov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.LLC “Biomedical Technologies”Nizhny NovgorodRussia

Personalised recommendations