Advertisement

Radiophysics and Quantum Electronics

, Volume 60, Issue 8, pp 670–679 | Cite as

Modeling of Thermal Lenses in Cr:CdSe and Cr:ZnSe Chalcogenide Gain Media

  • A. Yu. Konstantinov
  • O. V. Martynova
  • A. P. Zinovyev
Article

We estimate thermal aberrations in Cr:CdSe and Cr:ZnSe chalcogenide crystals exposed to continuous-wave electromagnetic radiation at a wavelength of 1907 nm. Using the SIMULIA Abaqus software suite, deformation of such materials during their heating due to absorption of part of the radiation is simulated numerically. On the basis of the obtained results, the focal distances of the lenses induced in crystalline media are calculated by the matrix optics method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Tarasov, Physics of Processes in Generators of Coherent Optical Radiation [in Russian], Radio i Svyaz’, Moscow (1981).Google Scholar
  2. 2.
    G. M. Zverev and Yu. D. Golyaev, Crystal Lasers and their Application [in Russian], Radio I Svyaz’, Moscow (1994).Google Scholar
  3. 3.
    N. D. Milovsky and V. I. Talanov, Influence of the Resonator Configuration on the Generation Threshold of an Optical Quantum Generator [in Russian], N. I. Lobachevsky Gorky State Univ., Gorky (1965).Google Scholar
  4. 4.
    S. Mirov, V. Fedorov, I. Moskalev, et al. J. Luminesc., 133, 268 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    C.E. Webb and J.D.C. Jones, Handbook of Laser Technology and Applications, Taylor & Francis, Abingdon (2003).Google Scholar
  6. 6.
    H. von Philipsborn, J. Appl. Phys., 38, 955 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    I. T. Sorokina, Opt. Mater., 26, 395 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    M.E. Doroshenko, P. Koranda, H. Jelinková, et al., Laser Phys. Lett., 4, 503 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    V. A. Akimov, V. I. Kozlovskii, Yu.V. Korostelin, et al., Quantum Electron., 38, No. 3, 205 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    M. A. Gubin, A. N. Kireev, Yu. V. Korostelin, et al., Bull. Lebedev Phys. Inst., 38, 7, 205 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    I.T. Sorokina and E. Sorokin, in: Proc. Advanced Solid-State Lasers, OSA, Munich (2001), Vol. 50, p. 157.Google Scholar
  12. 12.
    M. N. Cizmeciyan, J. W. Kim, S. Bae, et al., Opt. Lett., 38, No. 3, 341 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    J. D. Beasley, Appl. Opt., 33, 1000 (1994).ADSCrossRefGoogle Scholar
  14. 14.
  15. 15.
    M. J. Weber, Handbook of Optical Materials, CRC Press, New York (2003).Google Scholar
  16. 16.
    K. A. Yahya, O. A. Hussein, and O. H. Mustafa, Adv. Appl. Sci. Res., 4, 400 (2013).Google Scholar
  17. 17.
    H. Kuchling, Taschenbuch der Physik, Carl-Hansen-Verlag, Leipzig (2007).Google Scholar
  18. 18.
    L.D. Landau, L.P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford (2012).Google Scholar
  19. 19.
    A. Gerrard and J.M. Burch, Introduction to Matrix Methods in Optics, Wiley, New York (1977).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Yu. Konstantinov
    • 1
  • O. V. Martynova
    • 2
  • A. P. Zinovyev
    • 3
  1. 1.Research Institute of Mechanics of N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations